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Horizontal Transport and the Distribution of Nutrientsin the Coastal Transition Zone
off Northern California: Effects on Primary Production, Phytoplankton Biomass and
Species Composition

FRANCISCOP, CHAVEZ!, RICHARD T. BARBERZ, P, MICHAEL KOSRO3, ADRIANA HUYER3, STEVEN R. RAMP4,

TIMOTHY P. STANTON4, AND BLANCA ROJAS DE MENDIOLAS

Conductivity-temperature-depthsurveys during 1988 encountered strong baroclinic jets that were evident in
acoustic Doppler current profiler and hydrographicdata. During June and July 1988 afilament with high surface
nitrate, high chlorophyll, abundant populeations o neritic centric diatoms, and higher rates o primary production
was evident perpendicularto the coast between Point Arenaand Point Reyes. However, the high-nutrient and
phytoplankton regions were nat in the barodinic jets but were south and inshore of them. Surface weter
trangported offshore by the strong baroclinic jets wes found to have relatively low nutrient content, suggesting
thet the jets themsealves do not carry Significant levels o coadtally upwelled, high-nutrient water to the ocean
interior. The low nutrient and salinity content d the jet suggests that the water originated severa hundred
kilometers upstream.  Although the jets themsdlves do not appear to trangport significant levels d nutrients
directly from the coestd regime to the oceanic regime, dynamic processes associated with a meandering jet are
likely responsiblefor high surface nutrients found several hundred kilometers offshore. Processes such as
upweling dong the southern edge d the seaward jet result in significant enrichment o the coastd transition
zone and in large blooms o neritic diatoms. During 1988 the high-nutrient, high-phytoplanktonfilament was
present when the survey sequence begen but then decayed after a month. The surface and subsurfacenitrate
fields were coherent with the dynamic topography field throughout the survey sequence; however, the surface
and integrated chlorophyll fields were coherent only through the first two surveys. A decreasein phytoplankton
biomass began during the third survey coincident with physical changes which occurred in thet time frame: (1)
an intengfication o the undercurrent and (2) changesin the surfece circulationfrom predominantly offshoreto
predominantly longshore.  Understanding the processes responsble for the uncoupling between biology and

physicsis paramount for realistic biological moddsdf this region.

INTRODUCTION

Eastern boundary current systems, and the strong coastal
circulation patterns that are imbedded in them, are major
oceanographic features that determine the physical, chemical, and
biological character of alarge portion of the globa ocean [Ryther,
1969; Jahnke et al., 1990; Walsh, 1991]. An early view of the
eastern boundary system was that they were broad, shalow, and
slow currents [Wooster and Reid, 1963; Wooster, 1970] with a
steady, slow, and uniform advective character. The concept of a
slow and uniform current system began to change rapidly when
satellite surveys clearly showed that the California and the
Canary current systems consisted of a complex set of eddies and
cross-stream jets [Bernsteinet al., 1977]. Recently, a number of
papers have provided documentation for the existence of
energetic eddies and cross-stream jets as a dominant and
persistent component of the dynamics of the eastern boundary
current regions [Huyer,1983; Mooers and Robinson, 1984; Huyer
et al., 1984; Abbott and Zion, 1985; Davis, 1985; Flament et al .,
1985; Rienecker et al., 1985; Kosro and Huyer, 1986]. The
combination of traditional oceanography and satellite-borne
surveys led to the coastal transition zone (CTZ) concept that jets
and eddies determine the transition from the coastal processes to
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the interior of the ocean beyond the continental margin. This
concept of a highly energetic transition zone provided focus for
the CTZ program in the form of well-defined questions on the
origin, structure and consequencesof these energetic processes.

The energetic jets and eddies of the coastal transition zone
were originally identified on the basis of their temperature
signature [Bernstein €t al. 1977]. Later,ocean color [Abbott and
Zion, 1985], dynamic height and velocity [M ooersand Robinson,
1984; Kosro and Huyer, 1986] were used to further describe these
features. Before the CTZ work there was a preliminary physical
and a partial biological description in terms of ocean color, but
virtually no chemical description or studies on phytoplankton
species distributions (see Traganza et al., [1983], for the only
previous chemical description). Primary nutrient concentrations
are useful for at least two reasons: (1) they provide an indication
of the fertility of the region, and (2) they can be useful as tracers
for deducing circulation and water mass structure [Tsuchiya,
1975, 1985; Chavez et al., 1985]. Nitrate, therefore, can provide
an excellent means of describing the structure, source, and fate of
the jets and eddies that complements that provided by
temperature, salt, and ocean color.

The work described here used nitrate concentration and
phytoplankton biomass and species composition in order to
provide an improved resolution of the dynamic processes of the
coastal transition zone and insight on how these processes
determine the chemical and biological character of the adjacent
ocean.

MATERIALSAND METHODS

A series of repeated conductivity-temperature-depth survey
cruises were completed off northern California during 1988
(Table 1; Figure 1) as part of the Coastal Transition Zone (CTZ)
program sponsored by the Office of Naval Research (ONR).
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Tablel. Cruisesinthe NorthernCaliforniaCoastal TransitionZone During 1988 With Individuals
Responsiblefor the Different Measurements

Chief  Temperature,

Map Ship Date Scientist  Salinity ADCP Nutrients  Chlorophyll
1 Wecoma June20-27, 1988 Kosro Huyer Kosro Chavez Chavez
2 PointSur  July 5-12, 19838 Ramp Ramp Ramp Chavez Chavez
3 Point Sur  July 12toJuly 18, 1988 Ramp Ramp Ramp Chavez Chavez
4 Point Sur July 21-27, 1988 Stanton Stanton Stanton Chavez Chavez
5 Wecoma July 29 to Aug. 4, 1988 Kosro Huyer Kosro Chavez Chavez

During each survey, surface nitrate was mapped with a horizontal
resolution of 200 m yielding on the order of 10,000 observations
per cruise. Continuous surface measurements of phytoplankton
stimulated fluorescence were also collected. At the CTD stations
(on the order of 75 per cruise) surface samplesfor chlorophyll a
and phytoplankton species were collected from the ship's intake
and from the surface Niskin bottle. Discrete water column
samples to 500 m were collected with Niskin bottleson arosette
for the analysis of chlorophyll a and nutrients at stations 20 km
apart. During 1987 [Kosroet al. this issue] size separations of
chlorophyll a were performed using 1- and 5- um Nuclepore
filters [Chavez,1989].

Continuous analysis of nitrate+nitrite was performed using
reverse flow injection analyses [Johnson and Petty, 1983;
Johnson et al., 1985] with a Flow Injection Sciences model ATC-
30005 on water collected from the ship's intake. Phytoplankton
stimulated fluorescence was measured every 30 seconds using a
Seatech fluorometer and a Seabird sealogger. The fluorometer

wasimmersed in adark case through which water from the ship's
intake flowed. The ship'sintake was of the order of 5 m below
the sea surface. Chlorophyll a concentration was measured on
board ship with a Turner Designs model-10 fluorometer
calibrated with commercial chlorophyll a (Sigma) [Chavezer al.,
1990]. The samples for determination of plant pigments are
filtered onto 25mm Whatman GF/F filters and extracted in
acetone in a freezer for between 24 and 30 hours [Venrick and
Hayward, 1984]. Other than the modification of the extraction
procedure, the method used is the conventional fluorometric
procedure of Holm-Hansen € al. [1965]. Nutrient samples
collected from the CTD casts were frozen and returned to the
Monterey Bay Aquarium Research Institute (MBARI), where
they were analyzed on an Alpkem rapid flow analysissystem for
phosphate, silicate, nitrate, and nitrite using conventional wet
chemistry [Sakamoto et al., 1990]. Duplicate samples for
phytoplankton species composition were preserved with
cacodylate-buffered paraformaldehyde (pH of 7.4) and with
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Fig. 1. Standardgrid for the CTD surveysduring 1988. Full completionof the grid required 1 week.
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glutaraldehyde both to a final concentration of 2%. The
paraformaldehyde samples were concentrated by gravity in
settling chambers and counted using an inverted microscope
[Uterméhl, 1958]. Settled volumes ranged from 25 to 50 mL
depending on the chlorophyll concentration. Large organisms
(i.e., netplankton) were counted over half the base of the settling
chamber at 100x and small organisms (i.e., nanoplankton) were
counted on transects, representing 2 mL of settled volume, at
400x. Organisms were identified to species whenever possible,
however, when identification to species was not possible; as was
the case with the small flagellates, individuals were assigned to a
genus or group.

In view of the paucity of primary production measurements in
the study area estimates were made using multiple regression
models. Photosynthetically active radiation (PAR) was measured
continuously on the two 1988 Wecoma cruises with a
Biospherical 2401 sensor. The PAR data were provided by
C. Paulson of Oregon State University. PAR and surface
chlorophyll were used to estimate primary production. The
model relating chlorophyll, PAR and primary production was
developed from observations in Monterey Bay (F.P. Chavez,
unpublished data, 1990). In Monterey Bay, surface chlorophyll
(plus phaeopigments) and PAR explain 70% of the variance in
primary production (Figure2).
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Figure2. Scatter plot of measured euphotic zone depth integrated
primary production against that predicted from surface pigments
(chlorophyll+phaeopigments) and PAR (measured at the
Monterey Bay Aquarium). The data were collected in Monterey
Bay from April 1989 through April 1990. The model predicts
dlightly higher rates than those observed a lower levels and
slightly lower levels than those observed at the higher levels. The
regression equation is In(primary production (mgC/m%/day)) =
572 + 0.00029*PAR (uE/cmZ/day, measured with a cosine
sensor) + 0.33*In(surface chlorophyll a + phaeopigments
(mg/m?))

14,835
RESULTS

The surveys during 1988 focused on the the region off Point
Arena and Point Reyes, where strong baroclinic jets were known
to occur [Kosro and Huyer, 1986; Kosro et al., thisissue]. The
zone of interest, defined as the coastal transition zone, represents
atransition between the narrow and productive coastal upwelling
zone (about 25 km wide in the area of study) and the extensive
oligotrophic central gyre. The surveys during 1988 also
encountered strong baroclinic jets that were clearly visible in the
acoustic Doppler current profiler (ADCP) and hydrographic data
(Huyer et a., [this issu€]; Figure 3).

The spatia distribution of biological and chemical properties
showed that a filament with higher surface nitrate, higher
chlorophyll, and abundant populations of neritic centric diatoms
was evident off Point Arena and Point Reyes during late June and
early July 1988 (Figures 3 and 4). The filament extended from
the inner portion of the survey to the outer portion of the survey
grid about 250 km from shore. The width of the feature, along
the D line (Figure 1), was of the order of 75 km. The distinct
mesoscale structure of the energetic eddies and cross-stream jets
that are part of the California Current system was evident in the
horizontal distribution of nitrate, chlorophyll, phytoplankton taxa,
and dynamic topography (Figures 3 and 4).

The horizontal variability in surface nutrients and
phytoplankton while coherent with the advective regime was not
as expected. Visua inspection showed that the regions of
strongest offshore flow were regions of relatively low levels of
nutrients and phytoplankton. The higher surface nutrient and
phytoplankton regions were primarily to the south (or inshore)
and only partially imbedded in the regions of strong flow. Huyer
et al. [this issue] showed that the strong baroclinic jets could be
defined in terms of dynamic topography. Using the analysis of
Huyer et al., it can be shown that off Point Arena, the strong
offshore jets typically transport low nutrient and phytoplankton
waters at the surface (Figure 5).

Continuous measurements of surface currents, nitrate,
fluorescence, temperature and density show a clear offset
between the location of the strong baroclinic jets and the maxima
or minima in these properties (Figure 6). An exception to this
pattern is salinity whose minima is coincident with the strongest
flows. Huyer et al. [this issue] and Kosro et al. [this issug] have
inferred from the low salinity, characteristic of northern waters,
and other evidence that the strong baroclinic jets are part of a
meandering California Current. The low nutrient levelsfound in
the jets also suggests that these waters must have originated
several hundreds of kilometers upstream rather than at the coast.
The time scale of nutrient depletion in coastal upwelling systems
isof the order of 5-10 days [Maclsaac et a., 1985] and the speed
in the core of the jets was around 70 ecm/s. If the water in the jet
was of coastal upwelling originit had to have travelled from 300-
600 km prior to arrival at the D line (Figure 6). The D line,
however, was only 150 km from shore, so it is likely that the
water carried by the jets originated upstream of Point Arena.

The strong gradients in biological and chemical properties at
the surface were also evident subsurface. Nitrate concentration at
100 m showed a strong gradient below the jet axis (Figures 3, 7,
and 8) with the nitricline rising sharply on the south or inshore
side of the jet (Figures 7 and 8). A strong and robust relationship
was found between dynamic topography (or pycnocline depth)
and nitrate concentration integrated to 100 m and confirms that
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measurements), and nitrate at 100 m for thefivesurveysinTable 1.

therise in the nutricline beginson the southern or inshoreside of
the jet (Figure 9). The doming of the nitricline, presumably as a
result of dynamic processes associated with the jets, must be in
part responsiblefor the increased nutrient levels a the surface but
the exact mechanism for surface nutrient enrichment is yet to be
fully resolved. Candidates include upwelling along the jet edges
[Paduan and Niiler, 1990; Dewey and Mourn,1990] and vertical
wihd mixing on a shallow nutricline [Dewey and Mourn,19901.
The nutriclinedoming occurs over alarger scale than the surface
enrichment, implying that vertical mixing is not the primary
process at work. The distribution of properties suggests local
upwelling a the southern edge of the jet (Figure 7; see also
Figure 10 of Huyer et al.,[thisissug]) and this mechanism seems
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to be a strong candidatefor supplyingnew nutrients to the coastal
transition zone.

During 1988 the filament off Point Arena and Point Reyes
was evident for close to a month and then decayed as flow
became predominantly longshore. The surface and subsurface
nitrate fields were coherent with the dynamic topography field
throughout the survey sequence (Figures 3 and 9). The surface
and integrated chlorophyll fields were well correlated with
dynamic height (Figure 10) and coherent through the first two
surveys (Figures4 and 9). A decreasein phytoplanktonbiomass
began during the third survey and may be related to physical
changes which occurred in that time frame: (1) the undercurrent
intensified [Huyer & al., this issue] and (2) the circulation
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changed from predominantly offshore to predominantly
longshore (Figure 3). A time series of phytoplankton abundance
dong the D line (150 km offshore) shows the dramatic decrease
in chlorophyll and neritic diatom populations (principally
Chaetoceros debilis, C. concavicornis) from map 1 to map 5
(Figure 11), suggesting that the decrease in chlorophyll was
related to a decrease in diatom abundance. The diatom bloom
found during the first two surveys apparently resulted in a
depletion of silicate with respect to nitrate over the course of the
survey sequence (Figure 12). It is not clear why the
phytoplankton populations decayed as flow became longshore or
the undercurrent intensified, since nutrient levels remained high

and actualy increased in many of the areas where phytoplankton
levelsdiminished (Figures3, 4, and 9).

The correlation between chlorophyll concentration and the
abundance of diatoms was higher than with any other taxonomic
group (Table 2) and diatoms dominated al samples where
chlorophyll a (chl @) concentration exceeded 0.5 pug/L. Below
this concentration the relative contribution of coccolithophorids
and smal flagelates to phytoplankton biomass increased.
Dinoflagellates were never important contributors to
phytoplankton biomass during the study period. Picoplankton
populations could not be properly enumerated using settled
samples but size separations during 1987 showed that on average
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Fig. 6. Vauesdf near-surfacevariablesaong the D and E lines during the first survey cruise (normal component of
the current, negative offshore (m/s), fluorescence (volts), nitrate+nitrite (mM), salinity (psu), temperature("C), and
density anomaly (kg/m3). Fluorescence was well correlated with chlorophyll a (~=0.91), and the regression

equation was chlorophyll=-0.958 * 4.68*fluorescence.

35% of the chlorophyll in the warm "eddy" found to the north of
the Point Arenafilament passed through a 1-pm Nuclepore filter.
Recent work off Monterey Bay with epifluorescence microscopy
[K.R. Buck and F.P. Chavez, unpublisheddata, 1990) shows that
the warm eddy regions of the coastal transition zone are
dominated by Synechococcus, prochlorophytes, and other very
smal (less than 5 pm) solitary phytoplankton. The size
separations also showed that there is a relationship between
chlorophyll concentration and the percentage of phytoplankton

retained by 5-pm Nuclepore filters (Figure 13); at levels over
2pg chl /L dmost al of the biomass, dominated by diatoms,
was retained by the 5-pm filters. The vertical distribution of
chlorophyll and nitrate show that in the oceanic (north or
offshore) regions thereis a deep chlorophyll maxima[Cullen and
Eppley. 1981] coincident with the top of the nitracline and the
depth of the 1% isolume (Figures8 and 14).

The filament primary production rates predicted by the
chlorophyll and light model (Figure 15) are similar to thosefound
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Fig. 7. Sectionsof nitrate and chlorophyll a along the D line (see Figure 1) for the five surveysin Table 1.

in other coastal upwelling environments [Chavez and Barber,
1987]. Primary production rates are closeto 4 times higher in the
filaments than in the warm oceanic eddies (Figure 15). The
strong offshore baroclinic jets result in rates that are commonly
found within the coasta upwelling domain (i.e., the Rossby
radius of deformation) farther offshore. The mean production
rates for the survey box were 1240 mgC/m?Z/day duri ng the first
survey, when abundant phytoplankton populations were found,
and close to 50% lower (740 mgC/m?2/day) during the last survey,
when the offshore phytoplankton biomass was low.

DISCUSSION

Results from 1988 suggest that the strong baroclinic jets
commonly found in the coastal transition zone [Kosroand Huyer,
1986] are not responsible for significant transport of coastally

upwelled, high-nutrient water to the ocean interior. The surface
waters transported by the jets were found to have rdatively low
levelsof nutrients (Figure 3). Watersof higher nutrient content
were found several hundreds of kilometers from shore but they
were typicaly to the south and inshoredf the baroclinic jets. To
the north and offshore of the jets the surface waters were warmer
and had lower nutrient levels.  Although the jets themsalves do
not appear to transport significant levelsof nutrientsdirectly from
the coastal regime to the oceanic regime, dynamic processes
associated with the jets are likely responsible for high surface
nutrients found several hundred kilometers offshore. The high
levelsof surface nutrients offshore may be due to processeslike
upwelling dong the southern edge of the seaward jet so that
circulation patterns associated with the jets and eddiesresult in a
contribution of new nutrients to the coastal transitionzone.
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The strong correlation found in this study between dynamic
height and upper ocean nutrient content (Figure 9) is similar in
nature to the strong correlation found by Chavez [1987} and
Chavez and Brusca [1991] for sealevel and upper ocean nutrient

content in the southeastern Pacific. Barber

argue that the basin-wide patterns in productivity of the tropical

and Chavez [1986]
euphotic zone.

Pacific are related to dynamic processesthat regulate thermocline
topography. The connection between thermocline topography
and productivity is upper ocean nutrient content: when the
thermocline and nutricline are deep (and dynamic height and sea
level are high), the source of new nutrients is farther from the
Measurements of sea surface height from



Chavez et AL.: CoasTaL TransiTioN ZoNe TraNsPorRT AND NUTRIENTS

"\T 2500 . ©020-27 June 1988
. ©06-12 July
< o0 - R
L - - u
= 2000 . 029 July - 04 Aug
E .
g 15007 : :
o Inshore - Jet - Offshore
?_ 1000 . axls
| o .
< f %
£ sooq 4§ ot
= - e mA 8D
= 0 : ! + %—v—
6 7 8 9 10 1 12
& 1000 o Jet - | ©20-27 June 1988
£ et . ©06-12 July
~ o ° . axis .
3 sl
~ ° 8 o
g % .. 0 .
2 100+ Inshore °°t e 0° Offshore
I W o. ©®
© o ° d
= ° ° ®
> opoo ' . OOOP [ ]
< °. ’d0G o
) ® 9 . [ J .® o Uey
bt . L
o
<
o 10 — . . + '
1000 6 7 8 9 10 11 12
&\ Jet
£ axis
~ A21-27 JulE
CED N 029 July — 04 Aug
S’
£ A
o - .
© 100+ Inshore a : . Offshore
)
z o
g ag *
£ @ ¥
(&)
10 + } +
6 7 10 11 12

Dynamic height 0-500m (m2/s2)
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throughout the survey sequence with a correlation coefficient of 0.81 when all cruises were considered.
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satellites can likely be used to estimate upper ocean nutrient
content in this region. More study is required, at least on the
mesoscale, to better define the relationship between dynamic
topography and phytoplankton biomass (Figure 9).

Two distinct phytoplankton communities were found in the
coastal fransition zone: (1) a coastal diatom-dominated
community and (2) an oceanic small, solitary phytoplankton
community. The spatial distribution of phytoplankton
populations was similar to that observed for nutrients in that high-
chlorophyll areas, dominated by neritic diatom communities,
were found to the south and inshore of the jets and low
chlorophyll areas, dominated by small solitary phytoplankton

characteristic of oceanic waters, were found to the north and
offshore. The strong jets were partially imbedded in both systems
and appear to act as a boundary between them [Hood et al.,
1990]. Not surprisingly, the species composition of zooplankton
showed similar spatial structure [Mackas et al., this issue]. It can
be inferred from production rates and food web structure that
vertical particulate flux resulting from the diatom-dominated
communities should be several times the flux resulting from the
small, solitary phytoplankton oceanic communities [Michaels and
Silver, 1988].

The dramatic changes in phytoplankton populations observed
during the survey sequence suggests that much of the week-to-

Table 2. Statistics and Correlation Coefficients of Phytoplankton groups vs. Chlorophyll Concentration for Samples Collected Along
the D Line (Figure 1) During the Five Surveys (Table 1)

Standard Correlation
Variable N Mean Deviation Maximum Minimum Coefficient
Chlorophyll, pg/L 32 0.81 1.68 8.98 0.05
Phytoplankton, 32 16297 24108 123190 1160 0.95*
cells/50 mL
Coccolithophorids, 32 1876 1921 8425 200 0.43+
cells/50 mL
Diatoms, cells/50 mL 32 8587 18487 86415 9 0.79*
Centrics, cells/SOmL 32 7548 16496 76640 9 0.75*
Pennates, cells/SOmL 32 1019 2189 9775 0 0.86*
Dinoflagellates, 32 343 482 2114 0 0.00
cells/50 mL ' ’
Silicoflagellates, 32 12 49 275 0 0.56*
cells/50 mL
Monads, cells/50 mL 32 5498 6674 30350 300 0.64*

* Significant at the 99% confidence level.
+ Significant at the 95% confidence level.
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Fig. 13. Scatter plot of chlorophyll concentration against the percentage of chlorophyll retained by a 5-pm
Nuclepore filter for the survey in May 1987 [see Kosro et al., this issue].

month variability in phytoplarkton biomass composition and
production in this region can be related ta the variability in the
mesoscale circulation of the jets and eddies. Relationships
between circulation, plankton, and nutrients in the California
Current system derived from data collected quarterly [Chelton et
al., 1982] may need to be reinterpreted in light of these
observations. The decrease in phytoplankton biomass and
production, associated with the disappearance of diatom
populations, about halfway through the sequence of surveys is
extremely interesting even though we have yet to determine the
reasons for the demise of the diatoms. The timing of the
disappearance coincided with an intensification of the
undercurrent [Huyer et al., this issue] and a change in the
circulation from a predominantly offshore pattern to
predominantly longshore (Figures 3, 4, 6, 7, and 8). The
observed changes may be related to seasonal variations in the
California Current System. Just south of this region, Skosberg
(1936) and Bolin and Abbott (1963), have described physical and
biological changes that occur in July and August between the

upwelling period and the oceanic period when oceanic waters are
observed closer to the coast. Episodic and dramatic decays in
phytoplankton populations are probably important characteristics
of this region and may contribute significantly to the removal of
carbon (and silicate) from the surface to the deep sea and to the
ecological character of the region [Smetacek, 1985; Walsh, 1983].

One interpretation for the decreases in phytoplankton
populations is that the diatom-seeding mechanism (either
upwelling to the south of the strong currents or offshore
advection) disappeared after map 3. The uncoupling between the
nutrient and phytoplankton fields which occurs after map 3 would
then be a result of the lack of supply of neritic centric diatoms
(the organisms generally responsible for high biomass in the
ocean) to the offshore regions. A similar scenario has been
proposed for the equatorial Pacific [Chavez, 1989]. Martin and
Gordon [1988] found that the filaments of the coastal transition
zone in northern California had relatively high levels of iron.
Martin and his co-workers [Martin, 1990] suggest that iron is a
particularly limiting nutrient in the ocean and conceivably the
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Fig. 14. Relationship between surface chlorophyll and the depth of the 1% isolume as estimated from an optical

model [Morel, 1988] for stations of the first survey cruise.
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Fig. 15. Horizontal distribution of primary production during the first and the last cruises of 1988. Primary
production was estimated from a multiple regression model that uses PAR and surface pigments

(chlorophyll+phaeopigments)(see Figure 2).

decrease in phytoplankton standing stock may be associated with
a decrease in the supply of iron. It may also be that vertical
motion is a requirement for maintenance of nonmotile organisms
such as diatoms in the euphotic zone and that vertical motion
alohg the jet edge was relaxed when the undercurrent intensified
or the jet changed direction. Grazing also needs to be considered;
however, preliminary estimates suggest that macrozooplankton
grazing was not sufficient to explain the dramatic changes
(T.J. Cowles, personal communicatiori, 1990). Understanding the
processes responsible for high levels of phytoplankton biomass
and production in the coastal transition zone and perhaps more
importantly the rapid decreases in phytoplankton stocks is

required for development of realistic biological models of eastern
boundary systems.
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