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ABSTRACT

A linearized baroclinic, spectral-in-time tidal inverse model has been developed for assimilation of surface
currents from coast-based high-frequency (HF) radars. Representer functions obtained as a part of the generalized
inverse solution show that for superinertial flows information from the surface velocity measurements propagates
to depth along wave characteristics, allowing internal tidal flows to be mapped throughout the water column.
Application of the inverse model to a 38 km 3 57 km domain off the mid-Oregon coast, where data from two
HF radar systems are available, provides a uniquely detailed picture of spatial and temporal variability of the
M2 internal tide in a coastal environment. Most baroclinic signal contained in the data comes from outside the
computational domain, and so data assimilation (DA) is used to restore baroclinic currents at the open boundary
(OB). Experiments with synthetic data demonstrate that the choice of the error covariance for the OB condition
affects model performance. A covariance consistent with assumed dynamics is obtained by nesting, using
representers computed in a larger domain. Harmonic analysis of currents from HF radars and an acoustic Doppler
profiler (ADP) mooring off Oregon for May–July 1998 reveals substantial intermittence of the internal tide,
both in amplitude and phase. Assimilation of the surface current measurements captures the temporal variability
and improves the ADP/solution rms difference. Despite significant temporal variability, persistent features are
found for the studied period; for instance, the dominant direction of baroclinic wave phase and energy propagation
is always from the northwest. At the surface, baroclinic surface tidal currents (deviations from the depth-averaged
current) can be 10 cm s21, 2 times as large as the depth-averaged current. Barotropic-to-baroclinic energy
conversion is generally weak within the model domain over the shelf but reaches 5 mW m22 at times over the
slopes of Stonewall Bank.

1. Introduction

Internal tides are generated over sloping topography,
where the vertical component of the barotropic tidal
current forces oscillations in the density field (Wunsch
1975; Baines 1982). The M2 tide off Oregon is super-
inertial such that internal wave energy propagates away
from generation sites along wave characteristic surfaces,
or beams. The slope of the wave characteristics can be
estimated as

2 2 1/2 2 2 21/2tanw 5 (v 2 f ) (N 2 v ) , (1)

where w is the angle that the characteristics make with
the horizontal, v is the tidal frequency, f is the inertial
frequency, and N is the buoyancy frequency. Internal
waves incident upon supercritical bathymetry (where
the bottom slope is steeper than the wave characteristics)
reflect toward deeper water, while those incident upon
subcritical bathymetry will propagate into shallower wa-
ter. Where the bathymetric slope is close to tanw, strong
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bottom intensification of the baroclinic currents occurs.
The most plausible site for generating energetic internal
tides in the coastal ocean is the continental shelf break,
where over the distance of several kilometers bathym-
etry changes from supercritical (on the continental
slope) to subcritical (on the shelf ) (Figs. 1, 2).

The Oregon coastal shelf is relatively narrow (30–50
km wide) such that the internal tide propagating onshore
remains energetic up to the coast, enhancing spatial and
temporal variability in currents, mixing, and biological
productivity. The total M2 tidal current in this region
may reach 15 cm s21 or more, while maximum baro-
tropic (depth-averaged) currents are typically about 5
cm s21 or less (Hayes and Halpern 1976; Torgrimson
and Hickey 1979; Erofeeva et al. 2003). In coastal wa-
ters, internal tides show spatial variability on the scale
of several kilometers and temporal variability on the
scale of days. The first-mode internal M2 horizontal
length scale, estimated as 2NH/v, is 14 km in water of
depth H 5 100 m, given a typical value of N 5 0.01
s21. Topographic variation may introduce additional
length scales. One reason for high temporal variability
may be the spring–neap cycle (Petruncio et al. 1998).
Other causes of variation may be changes in the strat-



1734 VOLUME 33J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 1. Maps: (a) central part of the Oregon shelf. Contours are bathymetry every 50 m, but depths larger than 750
m are not contoured; shaded (white) areas are the regions where the slope is subcritical (supercritical) with respect to
the M2 internal tidal wave characteristics, corresponding to the horizontally uniform stratification shown in Fig. 2; stars
denote locations of the two HF radars. (b) Computational domain for the representer analysis and inversion [its boundary
is shown in (a) as the bold gray line]; contours are bathymetry, every 20 m; dots are the locations where HF surface
current data are obtained; circles are the reduced basis representer locations (see section 3c); the star is the ADP mooring
location.

FIG. 2. Potential density and corresponding buoyancy frequencyr
N used in computations: solid line is the mean of summer observa-
tions, 1961–71, at a station 46 km offshore of Yaquina Head (Smith
et al. 2000); the dashed line is a variant used to test solution sensitivity
to stratification (see section 7a).

ification or in the low-frequency background currents,
which may result from surface heat flux or wind forcing
on the shelf. During upwelling the lifting of isopycnal
surfaces near the coast affects the angle of wave char-

acteristics (Torgrimson and Hickey 1979). Intensive
wind-induced vertical mixing near the coast may weak-
en the baroclinic tidal current (Hayes and Halpern
1976). As a result, there are significant seasonal vari-
ations, with much weaker internal tides in winter (Er-
ofeeva et al. 2003).

Modeling internal tide variability on the shelf is dif-
ficult because of lack of information about surface heat
flux, wind forcing, and stratification on the scales of
interest. The requirement for fine spatial resolution re-
stricts the size of the computational domain, and the
need for open boundary flows contributes further to un-
certainty. Observations of shelf currents may provide
additional information about internal tides that can be
used to constrain the model by means of data assimi-
lation (DA). Since 1997, measurements of the surface
currents on the mid-Oregon shelf have been available
from two land-based high-frequency (HF) radars, over
an area about 50 km 3 50 km, with resolution 1–2 km
in space, and 20–60 min in time (Kosro et al. 1997).
In this paper, the focus is on semidiurnal tidal variations
during May–July 1998, when the HF surface data were
complemented by the currents from an acoustic Doppler
profiler (ADP) mooring, providing information about
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the flow variability with depth. Oke et al. (2002) used
this dataset to show the value of assimilating HF radar
measurements into a model of wind-forced coastal cir-
culation. For that study the data were low-pass filtered
to eliminate tidal and inertial oscillations, and the focus
was on subinertial time scales.

Data assimilation is a way to estimate the state of the
ocean that best fits both the dynamics and the data (Ben-
nett 1992). Since the data provide extra information for
the model, they may be utilized to correct the model
inputs in some way: to correct open boundary values,
estimate model parameters, and/or recover errors in the
dynamical equations. Optimal DA schemes require es-
timates of the model solution error covariance (Kurapov
et al. 2002). Ideally a DA system for the coastal ocean
would model both tidal and wind-driven circulation and
be based on implementation of the fully nonlinear dy-
namical equations. However, before such a complicated
system can be built, it is appropriate to focus on some
fundamental questions. Do measurements of surface
currents contain information about internal tides at
depth? If so, how can this surface information be pro-
jected downward in an optimal way? What are the prin-
cipal features of the model solution error covariance in
the superinertial band? These questions are addressed
here with a model based on simplified dynamics for
which a rigorous, variational, generalized inverse DA
method (GIM) is readily implemented (Bennett 1992,
2002). The DA model presented below is based on dy-
namics that describe linear harmonic oscillations of the
stratified ocean with respect to a state of rest, on realistic
bottom topography. Both generation and propagation of
internal waves are essentially linear mechanisms, so ap-
plication of this simple model to realistic data is prom-
ising. Our model does not include advection by mean
currents and accompanying spatial variability in the den-
sity field, which are limitations: wind-induced low-fre-
quency baroclinic currents along the coast may be as
high as 0.5 m s21, and their effect on the internal tide
cannot be addressed with our model.

The main goals of this study are to 1) learn about the
information content and utility of HF radar surface data
for modeling the superinertial internal tide, 2) demon-
strate the importance of a dynamically consistent inverse
problem formulation at the open boundary, and 3) de-
scribe the spatial and temporal variability of the internal
tide on the Oregon shelf at the dominant M2 tidal fre-
quency.

Section 2 provides an analysis of the ADP and HF
radar data. The inverse model is described in section 3.
In sections 4 and 5, the sensitivity of the inverse solution
to the open-boundary error covariance is studied in a
series of experiments with synthetic data. Section 6 dis-
cusses the effect of assumed dynamics on representer
functions that show the zones of influence of the data
and give the error covariance of the model solution.
Then, in section 7, realistic surface currents are assim-
ilated and the series of inverse solutions for May–July

1998 is validated against the ADP, followed by analysis
of the internal tide on the Oregon shelf. Section 8 con-
tains a summary.

2. Data analysis

For the period of May–July 1998, time series of sur-
face currents on the mid-Oregon shelf are available from
two HF radars (SeaSonde instrument systems, manu-
factured by CODAR Ocean Sensors), installed at Ya-
quina Head and Waldport (Fig. 1), as well as currents
from an ADP mooring installed 25 km off Yaquina
Head. The ADP, anchored at a depth of 80 m, provides
time series of velocity measurements in the water col-
umn at depths 12–68 m every 4 m. The ADP data were
harmonically analyzed in a number of overlapping 2-
week time windows such that variations associated with
the spring–neap tidal cycle are largely filtered out. Com-
plex harmonic constants for eastward (u) and northward
(y) components of velocity are computed in windows
centered on days 131–191, spaced 4 days apart. In the
following these time-varying estimates are referred to
by the center day in the window. Substantial intermit-
tence of the internal tide is seen in the tidal ellipses of
the ADP currents (Fig. 3a). The first baroclinic mode
remains dominant, but with amplitudes and phases vary-
ing with time. During days 131–155 the estimated ADP
M2 baroclinic velocities are relatively low, with maxi-
mum currents about 5 cm s21 both near the bottom and
the surface. Starting around day 159 the internal tide at
the ADP location becomes much larger, reaching 9 cm
s21 near the surface and 7 cm s21 near the bottom.
During days 159–187, the tide becomes surface inten-
sified, as near-bottom currents gradually decrease to 4
cm s21. The barotropic (depth averaged) current, with
amplitude about 4 cm s21, shows significantly lower
variability than the deviations from the depth average
(Erofeeva et al. 2003). Some variability in these esti-
mates of barotropic tidal currents may be due to data
noise, the fact that the depth-averaged current is not
exactly the barotropic current (separation of the flow
into barotropic and baroclinic components on the slop-
ping bathymetry is not obvious), and remnants of the
spring–neap cycle not entirely filtered as a result of data
processing in short time windows.

A land-based HF radar infers the surface current from
measurements of the radar backscatter from ocean
waves, considered with other information about the
waves (Kosro et al. 1997). Measured data were pro-
cessed to radial vectors every 10 min, which were then
averaged over 1 h, providing maps of the radial com-
ponent of the current with resolution 2 km radially and
58 azimuthally. The M2 harmonic tidal constants for the
radial components of surface velocity from the HF ra-
dars were computed in a manner similar to that used
for the ADP data. To reduce error, harmonic constants
are estimated by fitting measurements at four adjacent
locations of the data array for each HF radar system.
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FIG. 3. Horizontal M2 tidal current ellipses at the ADP data locations, decomposed into the depth average (shown
above the zero depth) and deviations over the water column: (a) harmonically analyzed ADP data, (b) prior solution,
and (c) inverse solution obtained by assimilating HF radar radials west of longitude 235.88. Here and in Figs. 10 and
13 the filled ellipses correspond to CW vector rotation; the line from the ellipse center shows the velocity direction at
zero phase. In the plot, northward velocity is directed up, and eastward velocity to the right.

FIG. 4. Low-pass filtered wind stress, from wind measurements at
Newport, Oregon (note that wind stress is shown here only for ref-
erence, no wind forcing is applied to the model).

Only harmonic constants with estimated mean least
square (MLS) error , 5 cm s21 are assimilated. In the
domain shown in Fig. 1b, the mean and median of MLS
errors vary insignificantly with time, remaining close to
2 cm s21.

During the study period the winds are mostly up-
welling favorable (Fig. 4). This is expected to cause
vertical mixing in a surface boundary layer and lifting
of isopycnal surfaces closer to the coast. However, we
lack specific empirical information about the density
structure for this period. In the computations of the in-
ternal tide the ambient potential density (z) is assumedr
to be horizontally uniform and temporally constant (Fig.
2). This approximation may be a serious source of error
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in our model, especially later in the study period since
during upwelling the pycnocline structure is gradually
built up, and during short relaxation events (no wind)
the pycnocline does not return to horizontal. However,
we adopt this approximation since the inverse model is
run in a small domain, where the misspecified open
boundary baroclinic flow is hypothesized to be a larger
source of error.

3. Inverse model

a. Model equations

The model describes linear harmonic oscillations of
the stratified ocean with respect to the state of rest.
Boussinesq and hydrostatic approximations are made.
State variables vary with time as exp(ivt). The model
is written in horizontal Cartesian coordinates with x to
the east, y to the north. Linearized surface boundary
conditions are applied at the mean sea surface level (z
5 0). The vertical coordinate is stretched into s 5 z/
H(x, y), and so the model equations are (cf. Blumberg
and Mellor 1987; Mellor 1998):

ivHu 1 f 3 Hu 1 gH=h

02gH =H ]r
1 =r 2 s9 ds9E 1 2r H ]s9o s

] K ]uM2 5 0, (2)1 2]s H ]s

]w
1 = · (Hu) 5 0, (3)

]s

]
ivHr 1 (rw) 1 = · (rHu) 5 0. (4)

]s

In (2)–(4), all the dynamic variables represent complex
amplitudes: u(x, y, s) 5 {u, y} is the horizontal velocity
vector, h(x, y) is the surface elevation, r(x, y, s) is the
potential density perturbation about a horizontally uni-
form mean state (z) 5 (x, y, s), and w(x, y, s) is ther r
velocity component normal to the s-surfaces (w 5 wcart

2 su · =H, where wcart is the Cartesian vertical velocity
component in the unstretched coordinates); the param-
eters to be specified are gravity g, the Coriolis parameter
f 5 const, the vertical eddy viscosity KM(x, y, s), ba-
thymetry H(x, y) and the reference density ro 5 const;
= and = · are the ‘‘horizontal’’ gradient and divergence
operators on a s surface.

Vertical dissipation in (2) is the only sink of energy
in the model and it is a very simple and admittedly
crude parameterization of turbulence associated with
background flows. A horizontal diffusion term is not
included in (2), partly for a technical reason, to allow
the solution of the momentum equations in terms of
velocity locally for each vertical column (see appendix
A). In fact, for coastal applications, horizontal dissi-

pation is a minor contributor to the momentum balance.
Since we do not solve the problem by time stepping,
horizontal dissipation is not needed for computational
stability. Vertical diffusion of r is not included in (4).
This simplifies the energy balance and is consistent with
the assumption that vertical diffusion does not have ef-
fect on the background (z).r

Surface and bottom boundary conditions, at s 5 0
and s 5 21, are

]u
5 0 at s 5 0, (5)

]s

w 5 ivh at s 5 0, (6)

w 5 0 at s 5 21, (7)

K ]uM 5 ru at s 5 21, (8)
H ]s

where r(x, y) is the bottom drag coefficient.
A depth-integrated continuity equation is obtained

with use of (3), (6), and (7):

0

ivh 1 = · Hu ds 5 0. (9)E
21

At the side boundaries G the normal current u · n is
specified pointwise:

0 at the coast
u · n| 5 (10)G 5u at the open boundary.OB

Since horizontal advective terms are dropped from the
equations, the problem with boundary condition (10) is
formally well posed, in the sense that it has a unique
solution which is stable to changes in inputs (Oliger and
Sundström 1978; see also Bennett 1992, chapter 9). The
open boundary condition (10) is in general reflective.
However, we are going to treat the boundary condition
as imperfect and correct open boundary baroclinic flux-
es. This can be done in such a way to improve wave
radiation out of the domain.

Once the dynamics are defined, the GIM requires
specification of a cost functional that is a weighted sum
of terms, each penalizing errors in the inputs such as
the model equations, boundary conditions, or data. This
can be minimized in an efficient way if the problem is
separated into a series of so called adjoint and forward
problems (see Bennett 1992, 2002; Egbert et al. 1994).
Technically, there are two approaches to formulating the
generalized inverse problem that eventually differ in
how the adjoint model is built (Sirkes and Tziperman
1997). In the first approach, the cost functional penalizes
the errors in the continuous equations and boundary
conditions (2)–(10), and the finite-difference imple-
mentation is formulated independently for the forward
and adjoint problems derived in continuous form. In the
second approach, to be taken here, the cost functional
penalizes errors in the discretized dynamical equations
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and boundary conditions. The advantage of this ap-
proach in our case is that the discrete adjoint solver will
be obtained as a matrix transpose of the forward solver,
simplifying derivation, as well as computer coding, for
representer calculation.

b. Model discretization

The equations and boundary conditions are discreti-
zed on a staggered Arakawa C grid, with details as in
Blumberg and Mellor (1987), and Mellor (1998). Then,
state variables at the points of the discrete grid are com-
bined into vectors of unknowns u, w, h, and r, cor-
responding to continuous Hu, w, h, and r. Discretized
model equations can be written in matrix notation as

Vu 1 Gh 1 Pr 5 f , (11)u

ivh 1 D u 5 f , (12)a a

Ww 1 Du 5 f , (13)w

Br 1 Z w 1 D u 5 f , (14)r r r

where (11) represents horizontal momentum equations
(2) combined with boundary conditions (5), (8), and
(10); (12) represents the depth-integrated continuity
equation (9); (13) is for the continuity equation (3) com-
bined with the bottom boundary condition (7); and (14)
is the discrete representation of the equation for the
potential density (4). In (11)–(14), V, G, and so on, are
the coefficient matrices resulting from discretization,
and fu, fa, etc., are forcing vectors. If the state variables
and the forcing vectors are combined into

u f   u

w f wn 5 and f 5 , (15)   
h fa   
r f   r

then Eqs. (11)–(14) can be formally written together as

Sn 5 f, (16)

where S is the model operator (matrix). In general, the
forcing vector f can be written as f 5 f0 1 e, where f0

is the vector of boundary values and e represents errors
in the discretized equations and boundary conditions.
Although in our study most of the elements of e are
always zero, we retain the general weak constraint for-
mulation for future convenience (see section 3c). An
efficient approach that we utilize to solve (16) for an
arbitrary f is based on the direct factorization of the
model operator (Egbert and Erofeeva 2002), as de-
scribed in appendix A.

c. Cost function and inverse solution

Data to be assimilated can be written in the general
form

d 5 l9n 1 e ,k k dk (17)

where the vector lk is the discrete data functional, the
prime denotes the complex conjugate matrix transpose,
dk is the kth scalar observation value, edk is the data
error, and k 5 1, . . . , K. All the data can be combined
in one matrix equation:

d 5 L9n 1 e .d (18)

The inverse solution minimizes the cost function:
21J(n) 5 (Sn 2 f )9 cov (Sn 2 f )0 0

211 (d 2 L9n)9 cov (d 2 L9n), (19)d

where cov and covd are the Hermitian non-negative
definite covariance matrices of errors in the model equa-
tions and the data, respectively. These have to be spec-
ified prior to inversion. In the statistical interpretation
of the GIM, the errors are treated as random vectors,
so cov 5 ^ee9& and covd 5 ^ed &, where angle bracketse9d
denote ensemble average. It is also assumed that dy-
namics and measurements are unbiased: ^e& 5 0, and
^ed& 5 0.

In our case, the first term in (19) incorporates pen-
alties on both the dynamical equations and boundary
conditions. If the errors in the dynamical equations and
boundary conditions are assumed to be uncorrelated,
this term can be written as the sum of penalties on the
errors in these two sources. Note that, in general, dy-
namical and open boundary condition errors may be
correlated (Bogden 2001). The inverse solution can be
expressed as

K

n 5 n 1 b r , (20)Oinv 0 k k
k51

where n0 5 S21f0 is the prior solution satisfying error-
free equations (11)–(14),

21 21r 5 S cov(S9) lk k (21)

are representer vectors, coefficients bk in (20) are ele-
ments of vector b, of size K:

21b 5 (R 1 cov ) (d 2 L9n ),d 0 (22)

and R is the representer matrix with elements Rkj 5 r j.l9k
The representer shows the zone of influence of each

observation in the model domain. It can be partitioned
into fields each providing correction to prior u, y, w, h,
and r. In (21), (S9)21lk is the adjoint representer solution,
which gives the sensitivity of the kth observation to
changes in forcing and boundary conditions. It is mul-
tiplied by the covariance, which usually has a smoothing
effect (see Egbert et al. 1994). Last, the ‘‘forward’’ prob-
lem (21) is solved. Our solution method for (16) allows
rapid computation of a large number of representers (see
appendix A). In our formulation, all the equations and
boundary conditions are written as weak constraints.
Strong constraint cases are recovered simply by setting
the appropriate parts of cov to 0.

In the statistical interpretation of the GIM, repre-
senters give the prior error covariance for the model



AUGUST 2003 1739K U R A P O V E T A L .

solution. Specifically, if e0 5 n0 2 ntrue is the error in
the prior solution, then

r 5 ^e e9&l .k 0 0 k (23)

In this interpretation, (Rjj)1/2 is the expected prior error
of the sampled quantity. Since the representer does not
depend on the actual observed value, but only on the
form of lk and assumed cov [see (21)], the expected
variability of the model solution can in principle be
assessed for any variable at any point. This property
will be used to compute the open boundary covariance
by nesting (section 4).

In the area shown in Fig. 1b harmonic constants for
the radial components of surface velocities from the HF
radars are available at over 900 locations. Computation
of the full set of representers would be costly. Conse-
quently, a reduced basis approach is taken (Egbert and
Erofeeva 2002), as detailed in appendix B. A set of 68
representers, chosen as a reduced basis for model cor-
rection, is computed for data functionals l̂k correspond-
ing to u and y at a fixed set of 34 surface locations (see
Fig. 1b). The sum in (20) is replaced by a linear com-
bination of the representers of the reduced basis [see
(B1)]. A vector b̂ of 68 representer coefficients is sought
to minimize the original cost function (19), that is, with
all the data in the second penalty term. Note that no
actual u and y data are measured at the reduced basis
locations and the radial components from the two HF
radars do not have to be reprocessed to obtain u and y
components. The inverse solution inv obtained with then̂
reduced representer basis should be a close approxi-
mation of ninv, obtained with the full basis, provided
representers for all the radial data can be approximated
well as a linear combination of representers from the
reduced basis set. With this approach, the same rela-
tively small representer basis is used to find the solution
in every time window, while the number and location
of harmonically analyzed HF radar data meeting our
accuracy threshold (see section 2) vary with time.

d. Computational setup

Most computations have been performed for the 38
km 3 56 km area shown in Fig. 1b that has a maximum
depth of 250 m and includes Stonewall Bank, a moderate
bathymetric rise. In this area, the data from both HF
radars, at Yaquina Head and Waldport, provide infor-
mation about two components of surface currents (Kos-
ro et al. 1997). The computational grid has 1-km res-
olution in the horizontal and 21 s levels in the vertical.
Some computations described in sections 4 and 5 have
also been performed for larger domains, at 2- and 3-km
resolution.

Some dissipation is needed for numerical stability, to
smear sharp gradients across wave beams resulting from
the singular forcing of the adjoint solution [see (21)].
Vertical eddy viscosity is taken to be horizontally uniform
and varying with depth as KM 5 1022 exp[2(z/10)4] 1

1024 (m2 s21). Thus KM approaches 1022 m2 s21 in the
upper 10 m (Wijesekera et al. 2003) and 1024 m2 s21 in
deeper water [a minimum value based on the parame-
terization of Pacanowski and Philander (1981)]. Increas-
ing KM to a constant value of 1022 m2 s21 everywhere
in the computational domain makes representer functions
smoother and has only minor effects on the inverse so-
lution. The linear bottom friction coefficient is a constant
r 5 2.5 3 1024 m s21. Unless otherwise specified, the
mean of summer observations, 1961–71, at a station 46
km offshore of Yaquina Head (Smith et al. 2000) defines

(z) (the solid line in Fig. 2).r
The prior model is forced at the open boundary by

barotropic (depth averaged) currents, taken from a
coastal-scale tidal inverse model in which TOPEX/Po-
seidon altimetry data are assimilated into the shallow-
water equations (Egbert and Erofeeva 2002). The same
prior solution is used in each time window. The prior
solution provides an accurate estimate of the barotropic
semidiurnal flow in the area (Erofeeva et al. 2003).
However, deviations from the depth average are much
smaller in the prior solution than in the ADP data (cf.
Figs. 3b, and 3a), suggesting that most baroclinic signal
propagates into the study area from outside. It is thus
essential to estimate baroclinic fluxes at the open bound-
ary (OB). This is done by means of DA.

To obtain an inverse solution, cov and covd should
be specified. A great deal of uncertainty still exists about
error statistics of HF radar data. Contributing factors
include instrumental and processing errors, environ-
mental conditions that affect signal scattering, and rep-
resentation of the measurement in the dynamical model
(i.e., the choice of lk). In the absence of detailed infor-
mation about all these factors, in this study we assume
the simplest diagonal covariance matrix for data errors,
covd 5 I, where sd 5 0.02 m s21 is based on typical2s d

MLS errors of the harmonic constants, and I is the iden-
tity matrix.

4. Error covariance for the OB condition

Although errors in the linearized equations are surely
not zero, we hypothesize that the major source of so-
lution error in our small domain is the open boundary
condition (10) and take this to be the only weak con-
straint. Thus, the rhs of Eqs. (11)–(14) will all be 0
except in the rows corresponding to open boundary
nodes, where fu is equal to the specified barotropic cur-
rent plus the error that is estimated through DA. Ac-
cordingly, in the matrix cov [see (21)] the only nonzero
entries are the elements corresponding to the spatial
covariance of OB fluxes: C(xj, sj; xk, sk) 5 ^q(xj,
sj)q9(xk, sk)&, where (x, s) 5 (x, y, s) are positions on
the OB, and q represents u at the western boundary and
y at the northern or southern boundary of our rectangular
domain.

In an oceanographic context, the input error covari-
ances are known only approximately, at best. In practice,
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the choice of covariance is guided by both the need to
satisfy (at least approximately) a number of physical
constraints and by ease of implementation. In our case,
physical constraints with which the open boundary co-
variance must be consistent include the following: (i)
at the OB, correction is provided only to deviations from
the depth-average current (recall that deviations from
the depth-average at the OB are 0 in the prior solution,
while depth-averaged currents are believed to be rea-
sonably accurate); (ii) u at the west, and y at the north
and south boundary segments are correlated in a way
to avoid nonphysical solution behavior in the corners
of the computational domain; (iii) the expected prior
error of the velocity at the OB is of the order of a few
centimeters per second (this requirement can be readily
satisfied by scaling the covariance); (iv) low vertical
modes are dominant; and (v) the covariance has a dy-
namically consistent spatial structure since, for instance,
propagating modes are correlated at different parts of
the boundary in accordance with their phase speed and
direction of propagation. This list of constraints for the
covariance can be refined and completed as more ex-
perience is gained in regional DA modeling, for ex-
ample, via the analysis of the representers and the in-
verse solution.

We tested two covariances that differ in the extent to
which criterion (v) is addressed. The Type I covariance
is constructed in an ad hoc manner guided by the prin-
ciples outlined above. The hope with such an approach,
which has been frequently used in the past, is that the
covariance enforces smoothing and thus regularizes the
inverse problem, but details of structure do not matter
so much. The Type II covariance is obtained following
a nesting approach, using the representer solution in a
larger domain.

The Type I covariance is assumed to be separable as

C(x , s ; x , s ) 5 C (x , x )C (s , s ),j j k k 1 j k 2 j k (24)

where C1 and C2 are both symmetric and positive def-
inite. To ensure regularity of u and y around corners
(criterion ii), velocity u in a s layer is partitioned into
a nondivergent flow, described by a streamfunction c,
and an irrotational flow, described by a potential f.
Spatial correlations for both ^cc& and ^ff& are assumed
to have a Gaussian form, with ^cf& 5 0. Then C1 is
obtained in the standard way as a linear combination of
derivatives of ^cc& and ^ff&. To derive C2, the errors
in the OB boundary condition are projected onto local
flat bottom rigid-lid baroclinic vertical modes associated
with stratification N(z), and the modal amplitudes are
assumed to be uncorrelated (Kurapov et al. 2002).

Our construction of the Type I covariance is already
quite involved, and yet some rather obvious issues (e.g.,
appropriate phase velocities along the boundaries) have
not even been considered. Nesting, based on the inter-
pretation of the representers as covariances [see (23)],
provides a simpler and more general approach to con-
struction of a physically consistent covariance for the

OB condition. The Type II covariance for u and y at
the boundary of the local grid can be obtained as a result
of the representer computation on a larger, coarser-res-
olution grid. In our application, the local grid is nested
in a large-scale grid covering an area of 177 km 3 435
km with 3-km resolution in the horizontal and 11 s
surfaces in the vertical (this domain is larger than the
area shown in Fig. 1a); maximum water depth is set to
500 m. For the large-scale grid, the open boundary con-
dition is a strong constraint, and the horizontal mo-
mentum equation (2) is a weak constraint. To form ma-
trix cov for the large-scale model, the covariance for
the errors in each u and y component of Eq. (2) is written
as in (24) with xj and xk now inside the domain. Here
C1 is Gaussian with a decorrelation length scale of 10
km and C2 is as above, based on the local flat bottom
modal decomposition. The Type II covariance is com-
puted on the large-scale grid as a representer matrix for
velocity observations at the locations corresponding to
the OB nodes of the small, nested domain (observations
are for u at the west, and y at the north and south).

Figure 5 illustrates the difference in the spatial pattern
of the Type I and Type II covariances at the northern
boundary. Distinctive features of the Type II covariance
are determined by the superinertial wave dynamics in
the stratified medium. The first baroclinic mode is pre-
served, indicated by the 1808 phase difference between
the surface and bottom. In contrast to the strictly real-
valued Type I covariance, the Type II covariance is
complex-valued allowing for progressive phase changes
along the boundary. The fact that energy (and hence
information) propagates along wave characteristics
manifests itself in the pattern of phase lines oriented at
an angle to the horizontal. For the assumed (z), ther
bottom slope near the coast is close to critical (see Fig.
1a), and here energy density may be intensified near the
bottom. Accordingly, the covariance amplitude, as well
as the expected prior error, is increased at this spot.

In the ‘‘hand-made’’ Type I covariance (see Fig. 5b),
the first baroclinic mode is also dominant, by construc-
tion. However, the other dynamically realistic features
evident in the Type II covariance are missing.

5. Computations with synthetic data: Effect of the
OB condition error covariance

When inverting HF radar surface currents (section 7),
ADP velocities are available to validate the data assim-
ilation results only at one location. To see better how
the choice of the covariance for the open boundary con-
dition (section 4) affects the solution everywhere in the
computational domain, tests with synthetic data have
been performed. To generate synthetics we first compute
the model solution for the larger 94 km 3 150 km area
shown in Fig. 1a, forced with depth-averaged currents
from the shallow-water inverse model. In this area, an
internal tide with an amplitude comparable to obser-
vations at the ADP site is generated over the shelf break.
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FIG. 5. Error covariance of y at the location shown as the star and
y9 everywhere else at the northern boundary: (a) Type II covariance
(obtained by nesting), complex amplitude is indicated by shading,
phase is contoured; (b) Type I covariance [real valued, 908 phase line
divides positive (at the top) and negative (near the bottom) values].

FIG. 6. Effect of the OB error covariance on the rms difference
between the inverse and validation u for a range of weights wo in
the computations with synthetic data. Thick lines: total rms; thin lines:
depth-average rms at the ADP location. Solid lines correspond to the
Type II covariance (obtained by nesting) and dashed lines to the Type
I covariance.

This solution is obtained with resolution 2 km 3 2 km
in the horizontal, and 11 s surfaces in the vertical, with
the maximum water depth set at 500 m. The total, depth-
dependent currents obtained from the 2-km resolution
solution are then used to force the model in the small,
higher-resolution domain to generate a validation so-
lution. Synthetic u and y data are sampled from this
solution at 34 surface locations, shown as circles in Fig.
1b, and random noise of amplitude 0.02 m s21 is added.
The inverse solution obtained with these synthetic data
is compared with the validation solution by computing
the rms difference of the complex-valued three-dimen-
sional velocity fields.

Since the choice of covariances in the cost function
(19) is always a hypothesis, it is important to learn about
sensitivity of the inverse solution to their specification.
In reality, uncertainty exists first of all about the mag-
nitude of the errors, both for the model and the data.
The relative amplitude of the assumed errors in the in-

puts can be controlled by scaling the covariances in (19).
Let us replace the covariance cov with cov, where21wo

wo is a scaling factor for the open boundary penalty
term in the cost functional (we again consider a strong
constraint case, so only OB elements of cov are non-
zero). The rms error of the inverse solutions, computed
with the Type I and Type II covariances, is plotted as
a function of wo in Fig. 6, where the total rms error is
averaged over the whole domain. For large values of
wo the solution rms error is close to that for the prior
solution. The minimum rms error is attained for wo 5
1 both for Type I and Type II covariances. For lower
wo, the surface data is fit better, but the DA model
performance deteriorates. Very low values of wo cor-
respond to the case of effectively no open boundary
condition penalty term in the cost function. The problem
becomes ill-conditioned; solution irregularities originate
near the open boundary and propagate inside the domain
(Foreman et al. 1980; Kivman 1997). In our case, spu-
rious small scale baroclinic vertical modes appear in the
solution for low wo.

For the full range of wo, the inverse solution obtained
with the Type II covariance has a smaller total rms error
than that obtained with the Type I covariance. Further-
more, for wo , 1 the Type II solution is much less
sensitive to weight misspecification than Type I. Over-
estimating the expected open boundary error amplitude
by an order of magnitude corresponds to wo 5 0.01 and
for this weight the Type I covariance yields a solution
with rms error already worse than the prior, while the
Type II solution still provides improvement. For small
wo, the total rms error is larger than the depth-average
rms error at the ADP location, indicating that the so-
lution quality is worse at the boundaries. This is illus-
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FIG. 7. Effect of the OB covariance on the spatial pattern of the depth-averaged rms error, in the computations with
synthetic data: (a) rms of the prior u; (b) rms of the inverse u, obtained with the Type II covariance, wo 5 1; (c) same
as (b), but with underspecified weight wo 5 1022; (d) rms of the inverse u, obtained with the Type I covariance; (e) same
as (d), but with underspecified weight wo 5 1022.

trated in Fig. 7 with 2D plots of depth-averaged rms.
Although for wo 5 1 the two covariances yield solutions
of comparable quality (cf. Figs. 7b and 7d), for the Type
I covariance the solution corresponding to an under-
estimated weight (wo 5 0.01) is much more irregular
(cf. Figs. 7c and 7e). Thus, results from experiments
with synthetic data indicate improvements with the Type
II covariance, which we use to obtain results in the next
sections unless otherwise specified.

Note that the choice of the open boundary error co-
variance affects transparency of the boundary to out-
going waves. Even if perfect radiation boundary con-

ditions are used, but treated as a weak constraint, a poor
choice of covariance can result in partial reflection. Con-
versely, in data assimilation there is an opportunity to
make reflective boundary conditions more nearly radi-
ative by an appropriate choice of the covariance. We
hypothesize that the improved performance of the Type
II covariance results at least in part from improved ra-
diation. The Type II covariance should have better ra-
diation properties since it is computed in a larger domain
that ‘‘does not know’’ about the existence of the small
domain. Improvement of wave radiation by the choice
of the OB covariance in a DA model should be explored
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FIG. 8a. Component y of the representer for the surface y measurement computed with Type II covariance. (upper)
South–north (SN) and west–east (WE) cross sections through the observation location (at 44.668N, 235.78E marked as
the star). (lower) Plan view of representer on the surface. Here and in Figs. 14 and 15 amplitude is shaded, and phase
angle, contoured, increases in the direction of phase propagation.

FIG. 8b. As in Fig. 8a but for observation at 44.588N, 235.68E over Stonewall Bank.
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FIG. 9. Rms difference of the ADP validation data and model so-
lutions, for each time window: prior solution (dashed thick line),
inverse solution with all the radial data assimilated (thin dot–dashed
line), inverse solution with radial data assimilated west of 235.88E
(solid thick line), and inverse solution with data assimilated west of
235.78E (solid thin line).

in detail in future studies, since it may be applicable in
coastal data assimilation in a broader context.

6. Representer structure

Analysis of the representer is useful since, for in-
stance, it shows how information from the data projects
(in space and time) into the inverse solution. Figure 8
shows the y component of the representer for a surface
y measurement. Zero phase contours in the alongshore,
south–north (SN) section extend from the observation
point downward along wave characteristics, giving a
clear illustration of the direction of information prop-
agation. For a measurement made northeast of Stonewall
Bank (Fig. 8a), two such zero phase lines are apparent
to the north and south of the observation point. In the
west–east (WE) cross-shore section, the representer
structure is similar to that of the Type II input covariance
at the northern boundary (see Fig. 5a) with a compli-
cated phase pattern resulting from superposition of in-
coming and reflected waves. For a y measurement made
over Stonewall Bank (Fig. 8b), the representer structure
is more strongly influenced by bathymetry. Slopes of
phase contours are close to the bathymetric slope at the
northern flank of the bank; that is, the slopes are close
to critical.

In both Fig. 8a and 8b, the representer phase on the
surface implies propagation from northwest to south-
east. This pattern may to some degree result from the
OB covariance (Type II), and hence reflect dynamics in
the larger domain. However, a similar pattern can be
seen in the representer obtained with the Type I co-
variance, so the preferred phase direction may well be
the effect of the local dynamics.

A representer for a sea surface elevation is qualita-
tively similar to that for a surface velocity, suggesting
that h measurements, for instance, from a satellite al-
timeter, may in principle be a valuable source of infor-
mation about baroclinic tides. However, the computed
expected prior error for h in our domain is less than 1
cm. A signal of such small amplitude contaminated by
observational noise would be difficult to observe on the
Oregon shelf.

7. Inversion of HF radar surface currents off
Oregon, May–July 1998

Analysis of the representer suggests that information
from the surface velocity measurements propagates to
depth along wave characteristics. This fact, as well as
results from the experiments with synthetic data, shows
that in principle assimilation of harmonically analyzed
surface currents can be useful for predicting internal
tidal flows at depth. Assimilation of real data allows a
rigorous test of the actual value of this data and our
model. It also shows where efforts should be first di-
rected to improve the inverse model.

a. Comparison with ADP validation data

Figure 9 shows the depth-average rms difference be-
tween the computed solutions and ADP validation data
for each of the 16 overlapping 2-week time segments.
Assimilation of the whole set of HF radar harmonic
constants yields a reduction in rms misfit compared with
the prior solution only for days 151–167 (compare the
thin dot-dashed and thick dashed lines in Fig. 9). When
only data west of longitude 235.88 are assimilated, im-
provement is obtained for a number of earlier and later
time segments (thick solid line in Fig. 9). For days 171–
179 the inverse solution rms misfit is less than the prior
solution rms misfit if only radial currents west of lon-
gitude 235.78 are assimilated (thin solid line in Fig. 9).
However, data in the stripe 235.78 , lon , 235.88 still
contain valuable information about flow in the begin-
ning of the assimilation period (compare the thin and
thick solid lines for days 139–147). The reductions in
misfit that result from not fitting the near-coast data
suggest that the model assumption of horizontally uni-
form background stratification may be poor for at least
a part of the study period. Since the winds during the
study period are generally upwelling favorable (see Fig.
4), isopycnals are presumably lifted near the coast (al-
though we have no measurements to verify this). During
short relaxation events (e.g., days 155–157 and 160–
162; see Fig. 4) the pycnocline will not return to hor-
izontal if the cross-shore pressure gradient is geostroph-
ically balanced by alongshore currents, and so devia-
tions from our assumed, horizontally uniform stratifi-
cation will tend to increase throughout the study period.
Our model is likely to get worse as the upwelling con-
tinues. In these conditions, model wave characteristics
near the coast may especially be expected to have the
wrong slope, so representers will project information
from the near-coastal data to the wrong locations off-
shore.

The inverse solution does not offer improvement in
terms of rms for days 131 and 135 when the ADP data
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FIG. 10. Ellipses of horizontal baroclinic velocity at the ADP data locations for days 171–191, obtained by (a)
assimilating HF radar radials only west of longitude 235.78E (instead of 235.88E as plotted in Fig. 3c), or (b) assuming
stronger stratification (dashed line in Fig. 2) in the first 50 m. Both of these variants on the standard case of Fig. 3c
have surface-intensified baroclinic currents, similar to the ADP data.

show low baroclinic signal (see Fig. 3a), or beyond day
179. Incorrect background stratification in the model
may explain the poorer performance at the end of the
studied period. Note that the relative increase in the rms
misfit after day 159 coincides with the rise in baroclinic
current amplitudes (see Fig. 3a).

Figure 3c shows horizontal tidal ellipses for the com-
puted baroclinic currents at the ADP location for the
case lon(HF) , 235.88. Qualitatively, the inverse model
captures much of the internal tide variability in the val-
idation data (cf. Fig. 3a). Starting with day 171, the
ADP data and inverse solutions have significantly dif-
ferent phases near the surface. Also, in the ADP data
the internal tide is surface intensified, a feature not re-
produced by the inverse solution. Surface intensification
is reproduced in the inverse solution if more data are
dropped near the coast [case lon(HF) , 235.78, Fig.
10a]. Alternatively, surface-intensified currents are also
obtained if the assumed stratification is increased in the
upper 50 m (on a flat bottom, such change in stratifi-
cation would have a similar effect on the shape of the
first baroclinic vertical mode). Stratification correspond-
ing to the latter experiment is shown as a dashed line
in Fig. 2, and the resulting baroclinic tidal ellipses at
the ADP location in Fig. 10b.

Covariability of the validation data and computed so-
lutions can be quantified by the complex correlation

q9q1 2ifCCCC(q , q ) [ |CC|e 5 (25)1 2 1/2 1/2(q9q ) (q9q )1 1 2 2

and the gain G, which complements | CC | in quanti-
fying the relative magnitude of q1 and q2:

|q9q |1 2G(q , q ) 5 . (26)1 2 q9q2 2

Here the vector of complex-valued entries q1 represents
the computed solution, q2 the corresponding validation
data, and prime again denotes complex conjugate trans-
pose. The vectors q1 and q2 may represent vertical pro-
files of currents for a given day, or alternatively time
series of harmonic constants at a given depth.

Covariability in the vertical is assessed for each day
for the case lon(HF) , 235.88 (Fig. 11), separately for
u (dashed lines) and y (solid lines). The prior solution,
which does not vary in time, is used to provide reference
levels for all parameters (shown in Fig. 11 as thin lines).
The inverse solution (bold lines) captures variability in
the vertical better than the prior solution in terms of
each | CC | , G, and fCC for most of the study period.
Covariability with time is assessed at each vertical level
where ADP data is available. When the whole time se-
ries (days 131–191) is used, the inverse solution is of
better quality than the prior solution in terms of | CC |
and G in the larger part of the water column. Improve-
ment in terms of fCC is marginal. If the statistics are
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FIG. 11. Functions showing ADP-prior and ADP-inverse solution
covariability in the vertical, for each day: amplitude | CC | and phase
fCC of complex correlation, and gain G (26), where q2 represents the
ADP measurements; lon(HF) , 235.88E.

FIG. 12. Functions showing ADP-prior and ADP-inverse solution covariability with time, at
each depth [lon(HF) , 235.88E]: statistics for days 139–167, for which the solution rms error is
improved. Legend as in Fig. 11. Values corresponding to rms amplitudes of the ADP fluctuation
currents , 1 cm s21 are not shown.

computed only for days 139–167 for which the solution
rms error is improved, the inverse solution is of better
quality than the prior solution in terms of all the three
criteria (Fig. 12). Note that at middepths, where the
magnitude of the baroclinic currents is low, estimates
of CC and G lose meaning. The fact that all the criteria
are improved below 40 m provides a clear demonstration
of the value of surface currents from HF radars in con-
straining subsurface tidal flows.

Our results suggest that the assumption of horizon-
tally uniform background stratification is a significant
deficiency in our model. To the extent that this is true,
our initial hypothesis that the only significant source of
error is in the open boundary forcing is questionable.
The hypothesis about the errors can be tested formally
(Bennett 2002, his section 2.3.3). Under the assumption
that the errors are Gaussian with zero mean and co-
variance cov and covd, twice the cost function 2J(ninv)
is itself a random variable having a x2 distribution with
2K degrees of freedom (a factor of 2 appears since the
data are complex valued); recall K is the number of
assimilated data (K ø 540 in the case lon(HF) , 235.88).
In particular, the mean value of 2J(ninv) should be 2K
and the variance 4K. Note that the reduced basis estimate
J( inv) (B2) is larger then the full basis estimate J(ninv),n̂
although these values should be close since inv ø ninv.n̂
For our series of inverse solutions J( inv)/K is in then̂
range of 2–12 implying that hypothesis about errors
should be rejected. The data term in J( inv) accounts forn̂
about 95% of the total cost function value, so changing
covd should have a stronger effect on J( inv) than cov.n̂
In this respect, better knowledge of the error model for
the data would be desirable.

By itself the x2 criterion does not say where the de-
ficiency in our hypothesis is; e.g., either one or both of
cov and covd could be misspecified. Increasing our es-
timate of the data error standard deviations from 2 to 3
cm s21 decreases J( inv)/K to a value near 1 over muchn̂
of the first half of the study. Such an increase in data
error is quite plausible. However, in the second half of
the study, when J( inv)/K . 6, unreasonably large in-n̂
creases in the data error would be required to bring the
test statistics down to acceptable levels, implying that
some modifications to cov are required at least for this
time period. Increasing the expected magnitude of errors
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FIG. 13. Tidal ellipses of the inverse solution, day 139: (a) depth-averaged current and (b) deviations from the
depth-average near the surface. Contours are isobaths of 50, 75, and 100 m.

in the baroclinic boundary conditions has little effect
on the value of J( inv). Furthermore, similar values aren̂
obtained for the test statistics with both the Type I and
Type II covariances. This suggests that as long as we
retain a strong constraint formulation, we cannot make
reasonable adjustment to cov and covd that are statis-
tically consistent with observations. Only by admitting
errors in our equations (and hence significantly changing
our assumption about cov) could we achieve consis-
tency between the HF radar data and our simplified
dynamical model.

Although our analysis of the x2 criterion suggests that
the inverse solutions satisfying our simplified dynamical
equations should be considered suboptimal, they are still
a significant improvement over the prior. Moreover, our
simplified model has allowed us to achieve the goals of
the study, stated in the introduction. From here we can
improve our model or attempt to use the dynamics as
a weak constraint.

b. Variability of the tidal fields

The internal tide is a significant contributor to M2

tidal flow at the surface. Deviations at the surface fre-
quently exceed the depth-averaged tidal current (Fig.
13). The computed internal tide varies on a scale of
about 10 km, in accordance with the theoretical esti-

mate. The horizontal tidal velocity vectors of the bar-
otropic flow rotate counterclockwise and ellipses are
strongly polarized, consistent with shelf-modified
Kelvin wave dynamics (e.g., Munk et al. 1970). At the
same time, vectors of the horizontal baroclinic current
(defined as the deviation from the depth-averaged) are
less polarized and rotate clockwise, consistent with ki-
nematics of free planar waves. Indeed, the direction of
rotation depends on the phase angle a between complex
amplitudes u and y, such that, by our convention, sin
a , 0 corresponds to clockwise rotation. If the rotary
components of the current are defined as y6 5 (u 6
iy)/2 then | y6 | 2 5 ( | u | 2 1 | y | 2 6 2 | u\y | sina)/4.
So, for the vector rotating clockwise, | y1 | , | y 2 | . It
is easily shown that for a planar wave (i.e., a wave
involving a pressure gradient only in one direction)
| y1 | / | y 2 | ø (v 2 f )/(v 1 f ), and so in our case
| y1 | K | y 2 | and rotation should be clockwise. To see
clearly the phase propagation of the baroclinic wave,
we plot the y 2 component of the baroclinic current at
the surface for days 139, 155, and 167 (Fig. 14). A
complicated phase pattern is seen and is due to the su-
perposition of incident waves and those reflected from
topography (or the coast). Despite day-to-day variability
in details, dominance of phase propagation from the
northwest to the southeast of the area is a persistent
feature.
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FIG. 14. Rotary current (u 2 iy)/2 at the surface, deviations from the depth average, for days 139, 155, and 167.
The star shows an ADP location.

The same phase propagation pattern can be found in
isopycnal displacements. The dominance of shoreward
phase propagation is seen most clearly in the cross-shore
section through the northern part of the study area,
where topography is relatively simple (Fig. 15, left pan-
els). In the cross section through Stonewall Bank (right
panels) topography complicates the phase pattern. For
instance, for day 155, the phase of the isopycnal dis-
placements suggests scattering off Stonewall Bank to
the west and east. The magnitude of the computed is-
opycnal displacements at middepth is 2–6 m, sometimes
reaching 10 m over Stonewall Bank.

The magnitude of the internal tide can also be quan-
tified by computing baroclinic kinetic energy (per unit
mass) averaged over the tidal period, KEBC 5 | u 2
u1 | 2/4, where u1 is the complex amplitude of the depth-
averaged current. Near the surface, superposition of
waves incident and reflected from the coast results in
zones of higher and lower KEBC. If KEBC is averaged
over a series of days, zones of higher internal tide energy
near the surface appear to be aligned along the coast
(Fig. 16a). This pattern may superficially suggest sur-
face bounce points of beams of internal tide oriented
perpendicular to the coast. However, this pattern and
cross-shore spatial scales are in fact consistent with en-
ergetics of a Poincare wave in the presence of a coast

(e.g., Gill 1982, chapter 10). This can be shown using
an analytical model of the stratified flow over the flat
bottom (Wunsch 1975), where the flow is separated into
a series of vertical modes and the dynamics of individual
modes are governed by shallow-water-type equations:

ivU 1 f 3 U 5 2=P, (27)
2ivP 1 (1/l )= · U 5 0. (28)

Here U(x, y) and P(x, y) are modal amplitudes of u and
p/ro, correspondingly. In the case N 5 const, l ø p/(NH)
for the first baroclinic mode. If the coast is straight and
is aligned with the y axis at x 5 0, then the solution is
sought as a superposition of an incident wave P 5 Pa

exp(2ikx 2 ily) and a wave reflected from the coast P 5
Pb exp(ikx 2 ily). Let us put Pa 5 1. To satisfy a no-flow
boundary condition at x 5 0, Pb 5 2c1/ , where c1 5c*1
2(lf 1 ivk)/(v2 2 f 2), and the asterisk denotes complex
conjugate. For a Poincaré wave, k2 1 l2 5 l2(v2 2 f 2),
and so the cross-shore component of the wave vector k
depends on the stratification, depth, and the direction a
of the incident wave phase propagation. Proceeding with
the solution, one obtains

2 2|U | 5 2|c | [1 2 cos(2kx)], (29)1

2 2|V | 5 2|c | [1 2 cos(2kx 1 f)], (30)2
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FIG. 15. Amplitude and phase of isopycnal displacements, shown in two west–east (WE) cross sections, (left) one north of Stonewall
Bank and (right) another through the bank, for days 139, 155, and 167.

where U and V are cross-shore and alongshore compo-
nents of U, c2 5 (lv 1 ifk)/(v2 2 f 2), and f 5
arg[c1 /( c2)]. Thus, near the coast, the kinetic energyc* c*2 1

of a baroclinic mode [the sum of (29) and (30)] does not
depend on the alongshore coordinate and has zones of
higher and lower magnitude in the cross-shore direction.
Relevant to our study, we take an estimate of N 5 0.01
s21, H 5 100 m, and a 5 2458 (a wave from the north-
west) so that for baroclinic mode 1 | c1 | 5 | c2 | , f 5
2348, and pk21 5 15 km. Then, the first three zones of
max KEBC should be 7, 22, and 37 km from the shore,
in close agreement with results of Fig. 16a.

Near the bottom, the intensity of the internal tide is
determined more directly by the interaction with local
topography, with larger KEBC found on the flanks of
Stonewall Bank (Fig. 16b). In the vertical, west–east
cross section north of the bank (Fig. 16c), an energy
minimum at middepth indicates dominance of the first
baroclinic mode. In the west–east section through Stone-
wall Bank, high KEBC in the water column over the bank
indicates that internal tide beams generated over this
topographic feature extend to the sea surface.

Day-to-day evolution of KEBC averaged over the tidal
period and over the whole computational domain (Fig.
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FIG. 16. Plot of KEBC averaged over a series of days 139–167: (a) at the surface [contour lines are bathymetry every
20 m; red marks show locations of zones of maximum KEBC predicted by the theoretical Poincaré wave solution (29)–
(30)]; (b) at the bottom; (c) west–east cross section north of Stonewall Bank; and (d) west–east cross section through
Stonewall Bank.

FIG. 17. Plot of KEBC averaged over the whole computational
domain and over the tidal period, shown for a series of days.

17) shows larger values between days 171 and 187,
consistent with the impression from Fig. 3. Note that
the level of KEBC for days 139–147 is the same as for
days 159–167 while both the validation data (see Fig.
3a) and the inverse solution at the ADP location (see
Fig. 3c) show a lower baroclinic signal for days 139–
147 than for days 159–167. This suggests that for days
139–147 the baroclinic tide was stronger away from the
ADP location than near the ADP site, as seen in Fig.
14a. So it may be misleading to attempt to assess the
intensity of the internal tide in the whole area from
information collected at one location.

c. Energy balance
Unless the bottom is flat, separation of a flow into

barotropic and baroclinic parts is not obvious, and the
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analysis and interpretation of energetics will depend to
some extent on how this partitioning is formally defined.
If the barotropic current u1 is defined as the depth av-
erage (Cummins and Oey 1997; Holloway 2001), and
the baroclinic current as the deviation from the depth
average, u2 5 u 2 u1, then the barotropic (depth in-
tegrated) energy equation is

] 1
2 2r (gh 1 H |u | )o 1]t 2

5 2= · (Hu p ) 2 r ru · u(2H ) 2 EC. (31)1 1 o 1

Here the field variables are time-dependent, rather than
complex amplitudes, p1(x, y, t) is the depth-averaged

pressure, p2(x, y, z, t) 5 p 2 p1, and the first term on
the rhs of (31) is minus the barotropic energy flux di-
vergence; EC is the barotropic-to-baroclinic energy con-
version rate:

0

cartEC 5 g ŵ r dz, (32)E
2H

where ŵcart is the vertical velocity (aligned with the ver-
tical z axis in Cartesian coordinates) associated with the
depth-averaged flow:

z (z 1 H ) ]h
cartŵ 5 u · =H 1 . (33)1H H ]t

The baroclinic, depth-integrated energy equation is

20 0 02] 1 gr ]u
2r |u | 1 dz 5 2= · u p dz 2 r ru · u(2H ) 2 r K dz 1 EC, (34)E o 2 E 2 2 o 2 o E M1 2 ) )]t 2 2r ]zz2H 2H 2H

where the first term on the rhs is minus the baroclinic
energy flux divergence. Defining the barotropic and bar-
oclinic flows as above has the advantage that the energy
conversion term in (31) finds its exact counterpart with
opposite sign in (34); adding (31) and (34) yields the
energy equation for the total flow so that the total energy
in the model can be accounted for.

In our analysis, we consider terms in the energy equa-
tions averaged over a tidal period. The depth-integrated
barotropic energy flux is from the south to the north
(consistent with Kelvin wave dynamics), on the order
of 10 kW m21, with relatively smaller values over the
shallows of Stonewall Bank (Fig. 18a). The barotropic
flux has low day-to-day variability. The depth-integrated
baroclinic energy flux is much smaller, on the order of
tens of watts per meter, and experiences substantial tem-
poral variability (Figs. 18b–d). The persistent feature
for all days studied is the general direction of baroclinic
energy flux from northwest to southeast, close to the
direction of phase propagation. This suggests that the
continental shelf break slope northwest of the studied
area may be a generation site of energetic M2 internal
tide which can propagate onto the shelf. Internal tides
are probably also generated due west and south of our
computational domain, but the steeper slopes in these
areas (Fig. 1a) reflect most of the internal tide energy
toward deeper water.

The time-averaged terms in the energy equations for
day 139 are shown in Figs. 19a–d and 19g. The diver-
gence of the barotropic and baroclinic energy fluxes,
and the energy conversion rate, are only a few milliwatts
per meter squared, at most. This is several orders of
magnitude lower than the values seen in areas of strong
internal tide generation such as the Hawaiian Ridge
(Merrifield and Holloway 2002). This is partly due to

the shallowness of the area. Also, while the continental
shelf slope outside our domain is steep, we do not expect
much conversion here compared to Hawaii since bar-
otropic flow near the coast mostly follows bathymetric
contours (Baines 1982).

If (33) is substituted into (32), the energy conversion
term can be separated into two parts:

0]h g
EC 5 2p | u · =H 1 (z 1 H )r dz, (35)2 z52H 1 E]t H

2H

where the first term is the topographic energy conver-
sion (e.g., see Llewellyn-Smith and Young 2001). The
second term is associated with sea surface variations,
and its physical interpretation is not entirely intuitive.
Its appearance is the consequence of our approximate
division into barotropic (depth averaged) and baroclinic
flows, with the elevation and density variations attri-
buted solely to the barotropic and baroclinic components
respectively. Consideration of the classical problem of
internal waves over a flat bottom with a free surface
(Phillips 1966; Wunsch 1975) shows that this division
is not exactly correct. For that simple analytical case
the flow can be decomposed into a series of vertical
modes such that the depth averages of the baroclinic
pressure modes are not identically zero. Potential energy
for both the barotropic (mode 0) and baroclinic (all other
modes) components include contributions from both el-
evation and density variations. Since the modes are dy-
namically uncoupled [cf. (27)–(28)] there will be no
barotropic to baroclinic energy conversion. In particular,
the second term in (35), which is present even over a
flat bottom in our approximate treatment, would not
appear with a proper division into barotropic and bar-
oclinic modes.

In regions of strong bathymetric variation (such as
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FIG. 18. Energy flux (EF), depth-integrated and averaged over the tidal period: (a) barotropic
EF, for day 139, scale vector in the lower right corner is 15 kW m21; (b)–(d) baroclinic EF, for
days 139, 155, and 167, scale vector is 40 W m21. Shaded contours are bathymetry, every 20 m.

ocean ridges or the continental shelf break) the first
term dominates in (35). However, within our study
area topographic variation is relatively mild such that
the vertical velocity at the surface is comparable with
that at the bottom. Accordingly, both components of
EC are of similar magnitude (cf. Figs. 19d–f and 19g–
i, where the terms are shown for days 139, 155, and
167). However, they have different, distinctive pat-
terns. For days 155 and 167, topographic conversion
is positive and strongest near the western slope of
Stonewall Bank. However, for day 139, the topo-
graphic EC is negative in the same area, and strong

positive conversion occurs at the north slope. Reverse
topographic energy conversion, from the baroclinic
to barotropic flow, is possible because the sign of the
time-averaged EC depends on the phase shift between
ŵcart and p 2 at the bottom; since most of the baroclinic
wave propagates into the domain from outside, p 2 is
not necessarily phase locked to ŵcart .

The phase difference between r and h determines the
sign of the second term of (35), averaged over a tidal
period. The plots for this term (see Figs. 19g–i) highlight
the baroclinic wave propagating from the northwest and
apparently reflecting from topography and the coast.



AUGUST 2003 1753K U R A P O V E T A L .

FIG. 19. Terms in the energy equations averaged over the tidal period: (a) divergence of the barotropic energy
flux, day 139; (b) divergence of the baroclinic energy flux, day 139; (c) total dissipation, day 139; (d)–(f )
topographic EC for days 139, 155, and 167, respectively; (g)–(i) second term in (35), for the same days.
Contours are bathymetry every 20 m.

Terms on the rhs of (34) averaged over the whole
computational area and over the tidal period are shown
in Fig. 20a, for every time window. Plotted are the
baroclinic energy flux into the area through the open
boundary [OB EF, the spatial integral of the first term
on the rhs of (34)], the dissipation [combining the sec-
ond and the third terms on the rhs of (34)], the energy
conversion split into the two terms [see (35)], and the

residual (numerical error) in the energy balance com-
putation. The energy conversion terms are much smaller
than the OB EF, demonstrating that most baroclinic en-
ergy comes through the open boundary with the net
influx balanced by dissipation.

Integrated over the 13 km 3 22 km area of the Stone-
wall Bank, the time-averaged energy balance (Fig. 20b)
differs from that integrated over the whole computa-
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FIG. 20. Terms in the baroclinic energy equation (34) averaged
over the tidal period and (a) averaged over the whole computational
domain, or (b) averaged over the area of the Stonewall Bank. Case
lon(HF) , 235.88E. Dots show the residual (numerical error) in the
energy balance.

tional domain (Fig. 20a). Over the bathymetric rise,
topographic EC is comparable to the energy flux into
the smaller area and is biased toward positive values.

8. Summary

Our study is the first attempt to model superinertial
internal tide variability on the shelf using data assim-
ilation. Since the tidal flow depends critically on hy-
drography and open boundary currents that are poorly
known, data assimilation seems a promising ap-
proach. The representer solution and computations
with synthetic data show that in principle measure-
ments of surface currents can be used to map tidal
flow at depth. For the superinertial M 2 tide, infor-
mation from the surface is projected in space along
wave characteristics. Application of our frequency
domain inverse model to HF radar data harmonically
analyzed in a series of overlapping 2-week windows
provides a uniquely detailed picture of the temporal
and spatial variability of internal tide on the central

Oregon shelf. Comparison with the ADP data shows
that assimilation of harmonically analyzed surface
current measurements from the coast-based HF radars
captures temporal variability, as well as variability in
the vertical, of the internal tide.

Although M 2 baroclinic flows on the mid–Oregon
shelf are variable and intermittent, some features are
found to be persistent. For instance, during the study
period the phase and energy of the baroclinic tide prop-
agated in the same direction, from north-west to south-
east. At the surface, baroclinic surface tidal currents
(deviations from the depth-averaged current) can be 10
cm s21 , 2 times as large as the depth-averaged current.
Allowing for spring–neap variations and more rapid
changes in the internal tide in response to changes in
ocean conditions, peak baroclinic velocities in the
semidiurnal band could be easily 2 times this. The
analysis of the energy balance demonstrates that most
baroclinic signal comes into the study area via the open
boundaries, and so a proper specification of OB con-
ditions is critical.

The generalized inverse method offers great flexi-
bility in the formulation of the DA problem. For in-
stance, weak constraint DA (where dynamical equa-
tions are assumed to contain error) is used here to find
an appropriate covariance for the open boundary con-
dition by nesting. Then, strong constraint DA (with
exact dynamics) is implemented to estimate open
boundary baroclinic currents using the measured sur-
face velocities. One of the values of the representer
method is that a dynamically consistent prior error co-
variance for the model solution can be computed, rather
than guessed.

From the perspective of data assimilation, this study
raises important questions concerning open boundary
conditions. Since DA can provide corrections to the
boundary values, there is an opportunity to control
radiation by the choice of open boundary condition
covariance, consistent with the modeled dynamics. In
our study, nesting is adopted as the simplest way to
obtain a covariance that should improve wave radia-
tion. Computations with synthetic data show that such
a covariance yields an inverse solution superior to that
obtained with the best covariance that we could make
up without nesting.

Although the dynamical model can in principle be
used at any frequency, limited accuracy of HF radar
data poses difficulties in estimating major tidal con-
stituents, other than M 2 , from short time series. Off
Oregon, S 2 is the second largest tidal constituent with
barotropic tidal magnitude about 40% of M 2 and a
period (12 h) very close to that of M 2 (12.4 h). The
K1 diurnal tidal frequency is subinertial so that free
internal waves are not allowed. Tidal signal in HF radar
surface data at the K1 frequency is probably also con-
taminated by wind-induced currents due to a diurnal
sea breeze (Erofeeva et al. 2003). Tidal studies in the
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diurnal band should probably make allowance for this
additional forcing.

The internal tide inverse solution is sensitive to the
background stratification and velocity fields. These
could possibly be accounted for within the context of
our simple model by means of weak constraint DA.
Then careful interpretation of the dynamical error
would be necessary to avoid confusion in the analysis
of the momentum and energy budget. A better ap-
proach to improvement of the internal tide prediction
would be to improve the model by allowing for a
horizontally nonuniform background stratification.
Such modifications to the model should also include
the background current to geostrophically balance
background horizontal pressure gradients. Lineari-
zation with respect to this new basic state would yield
dynamical terms that describe advection of tidal per-
turbations by the background currents. Such a model
could be useful for addressing the question of the
effect of subinertial currents on internal tides, which
remains open. However, as soon as advective terms
are included, the task of finding OB conditions that
guarantee a well-posed formulation becomes nontriv-
ial (see Bennett 1992, chapter 9). Our example, with
a simpler model, shows that finding an appropriate
set of OB conditions does not solve all the problems
at the OB if the task is to restore OB inputs by data
assimilation. Attention should thus also be given to
the OB error covariance.

To provide a more realistic background state, a
coastal DA system should eventually couple a tidal
inverse model and a reliable model of wind-driven
circulation. This would provide a more realistic back-
ground state for the tidal model, as well as a frame-
work for studying tidal effects on subtidal flows. Our
success with inversion of the HF radar data to describe
three-dimensional superinertial tidal flow, using sim-
ple dynamics, is encouraging for the optimal use of
surface current measurements with more advanced
models.
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APPENDIX A

Model Solver

The solution strategy for (11)–(14) is to operate
with parts of the discretized model operator as sparse
matrices, eliminate u and w, then solve the reduced
size matrix problem by direct factorization. Elimi-
nation of variables is accomplished by a series of

small size matrix inversions locally in each vertical
column of the computational grid.

To accomplish this, we approximate (11) by
1u 5 Cf 2 C r ,u u (A1)

where C u 5 C(G | P),

h
1r 5 , (A2)1 2r

and C ø V 21 . For the original continuous equations
the operator corresponding to V in (11) and its inverse
are local in the horizontal coordinates x and y. So, a
continuous analog of (A1) is exactly equivalent to (2).
However, discretized on the staggered C grid the Cor-
iolis term couples the u and y components of u at
neighboring horizontal locations. This destroys the
block structure of V and makes V 21 a full matrix.
To avoid this we directly discretized the horizontally
local inverse operator: {u, y} is first transformed into
y6 5 (u 6 iy )/2 (Lynch et al. 1992; Muccino et al.
1997); the momentum equations are decoupled with
respect to y1 and y 2 , so inversion for y6 is performed
locally at each u and y location of the C grid; finally,
backward transformation is made to get u. All these
steps are fixed in the matrix C.

From (13), we obtain, taking (A1) into account,
21 21 21 1w 5 W f 2 W DCf 1 W DC r .w u u (A3)

The resulting system of equations for r1 is obtained by
substitution of (A1) and (A3) into (12) and (14) and
then combining them to give

1Ar 5 F f 1 F f 1 f ,u wu w r1 (A4)

where

iv I 0
A 5 B 1 D C , B 5 ,2 2 2u )1 20 B

DaD 5 2 ,2 211 2D 2 Z W Dr r

0
F 5 D C, F 5 ,u 2 w 211 22Z Wr

faf 5 .1r 1 2fr

The matrix B2 is partitioned into blocks such that stan-
dard block-matrix multiplication can be performed for
B2 and r1 (A2); Fw has zeros in the rows corresponding
to the depth-integrated continuity equation. The solution
to (A4) is found by direct LU factorization of A using
a standard routine for banded matrices (Anderson et al.
1992). Then multiplication by both A21 and its complex
conjugate, matrix transpose (A9)21 can be accomplished
rapidly by solving the appropriate triangular systems.
Last, the solution to (11)–(14) is
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21 21 21C 2 C A F 2C A F 2C A u wu u u

u f   u   
21 21 21 21 21n [ w 5 C A F 2 W DC C A F 1 W C A f , (A5)    u ww w w w  

1r f 1     r
21 21 21A F A F A u w

where Cw 5 W21DCu, and a 3 3 3 block-matrix is
S21. The size of the numerical problem is limited by
the storage required for the LU factors of the banded
matrix A. The advantage of the solution approach de-
scribed above is that once matrix A is factored, a large
number of representers [see (21)] can be rapidly com-
puted as a series of matrix-vector and vector–vector
operations. Also, the adjoint solver (S9)21 is easily ob-
tained as a complex conjugate, matrix transpose of the
block matrix in (A5).

APPENDIX B

Reduced Basis Approach

Let be a data functional corresponding to the assumedl̂9k
observation from the reduced basis, k 5 1, · · · , K1. In
our study u sample u and y at 34 points on the surface,l̂9k
so K1 5 68. Representers of the reduced basis are com-
puted as r̂k 5 S21cov(S9)21l̂k. The inverse solution is
sought in the form

K1

n̂ 5 n 1 b̂ r̂ . (B1)Oinv 0 k k
k51

The task is to find the vector b̂ of representer coefficients
b̂k that yields a minimum of the original cost function
(19), which is

ˆJ(n̂ ) 5 b̂9Rb̂ 1 (d 2 L9n 2 Pb̂)9inv 0

213 cov (d 2 L9n 2 Pb̂). (B2)d 0

Here R̂ is the representer matrix of the reduced basis,
of size K1 3 K1, with elements R̂kn 5 r̂n; P is of sizel̂9k
K 3 K1 with elements Pkn 5 r̂n, where are thel9 l9k k

discrete data functionals for actual observations [see
(17)], and r̂n is the representer from the reduced basis.
Optimal representer coefficients are found as in Egbert
and Erofeeva (2002):

21/2 2 21 21/2ˆb̂ 5 R QL(l 1 L ) V9cov (d 2 L9n ),d 0 (B3)

where the matrices V, L (diagonal), and Q are the
result of singular value decomposition: VLQ9 5
s.v.d.{ PR̂21/2 }.21/2cov d
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