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[1] An optimal interpolation (OI) sequential algorithm is implemented for a three-
dimensional primitive equation model to assimilate current measurements from acoustic
Doppler profilers moored on the Oregon shelf as a part of the Coastal Ocean Advances in
Shelf Transport (COAST) upwelling experiment (May–August 2001). A stationary
estimate of the forecast error covariance required by the OI is computed based on the error
covariance in the model solution not constrained by data assimilation. Lagged model error
covariances are used to account for the effect of previously assimilated data. The forecast
error covariance has a shorter alongshore spatial scale than the model error covariance
unconstrained by the data, as an effect of propagating dynamical modes. Assimilation of
currents from one or two of the moorings located on the path of the upwelling jet helps to
improve the model data rms error and correlation at the mooring sites located at an
alongshore distance of 90 km, south or north from the assimilation sites. The coastal jet is
deflected offshore over Heceta Bank, and assimilation of data from an inner-shelf mooring
in the jet separation zone does not help to improve prediction in the far field. Larger
improvements are obtained for the first part of the study period (yeardays 146–190). In the
second part (days 191–237) the geometry of our limited area model possibly limits
prediction accuracy. In numerical experiments involving assimilation of data from only
one mooring the actual and expected rms error improvements are compared, providing a
consistency test for the forecast error covariance.
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1. Introduction

[2] Modeling and data assimilation (DA) are to become
essential components of emerging coastal observatories,
providing three-dimensional (3-D) and time-dependent
descriptions of the ocean dynamics on the shelf. In the
scope of today’s extensive observational programs, data
assimilative models can serve as tools for data synthesis,
or as dynamically based interpolators between observations
that remain sparse in space and time.
[3] For applications to the Oregon coast, a high-resolution

limited-area circulation model must represent stratified
flows over shelf topography and include parameterizations
of surface and bottom turbulent boundary layer processes
[Allen et al., 1995; Federiuk and Allen, 1995; Oke et al.,
2002a, 2002b, 2002c]. Major error sources in such a model
are the wind stress, open boundary conditions, model
bathymetry and approximations of subgrid turbulent pro-
cesses. Data assimilation methods use observations inside
the modeled area to reduce model solution error and provide
an improved description of the ocean state [Bennett, 2002].

These methods can also be used to assess solution error
statistics.
[4] In the context of coastal observatories, surface cur-

rents from high-frequency (HF) radars [Kosro et al., 1997]
and vertical profiles of horizontal currents from moored
acoustic Doppler profilers are particularly convenient data
sources for assimilation. These instruments sense the cur-
rents remotely, providing time series data at fixed points that
are most readily combined with models providing an
Eulerian description of oceanic flows. Assimilation of HF
radar surface currents into models of wind-forced coastal
circulation has been a focus of a number of studies [Lewis et
al., 1998; Breivik and Sætra, 2001; Oke et al., 2002a], all
using a fully nonlinear primitive equation model, realistic
data, and a variant of the optimal interpolation (OI) method,
in which the model forecast is corrected sequentially based
on forecast data differences and a stationary estimate of the
forecast error covariance Pf.
[5] The present study is to our knowledge the first

example of assimilation of depth-dependent velocity mea-
surements from multiple moorings into a 3-D stratified
coastal circulation model. Velocity measurements from
seven moorings on the mid-Oregon shelf are available for
May–August 2001 (Figure 1): six moorings, combined into
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two cross-shore lines 90 km apart, are from the Coastal
Ocean Advances in Shelf Transport project (COAST, http://
damp.oce.orst.edu/coast [Boyd et al., 2002]) while the
mooring NH10 is a part of the long-term program on Global
Ocean Ecosystem Dynamics (GLOBEC, http://www.
usglobec.org/gaag/overview.html). We assimilate data from
a subset of moorings and validate the solutions against
velocity measurements from the moorings not used for
assimilation. In this way, the effects of assimilation of
distant data on the coastal velocity fields are studied. The
effect of velocity assimilation on other oceanographic
variables of interest are addressed in a separate manuscript
[Kurapov et al., 2005].
[6] The OI method is a zero order approximation of the

Kalman filter (KF) [Miller and Cane, 1989]. The KF
updates Pf each time data are assimilated, which for most
oceanographic applications is a prohibitively expensive
computational task given the size of Pf. Various approx-
imations to the KF, more rigorous than OI, e.g., the
reduced rank KF and the ensemble KF have been devel-
oped to help overcome the computational demands of the
full KF; see Fukumori [2002] for a review on these
methods. Owing to their simplicity, OI-type schemes re-
main a practical tool in operational DA [e.g., Breivik and
Sætra, 2001] and in scientific studies, e.g., if the goal is the
initial assessment of the value of different data sources in
DA [Chen and Wang, 1999; Oke et al., 2002a; Molcard et
al., 2003].
[7] In section 2 of this paper, the model setup is

described. Model-data comparisons are described in sec-
tion 3. The details of the OI method are presented in
section 4. The distant effect of assimilating currents from
a cross-shore line of moorings is discussed in section 5. In
section 6 assimilation of currents from a single mooring is
considered and the actual performance of DA is compared

to the expectations based on statistical considerations, to
provide a consistency test for the forecast error covari-
ance. The role of propagating dynamical modes in OI is
discussed in section 7 and a summary is provided in
section 8.

2. Model Configuration and Mooring Locations

[8] To describe ocean dynamics on the Oregon shelf, we
use the Princeton Ocean Model (POM [Blumberg and
Mellor, 1987]). The model configuration is similar to that
used by Oke et al. [2002a, 2002b], where implementation
details, omitted here, can be found. The model domain
extends 220 km offshore and 350 km alongshore (see
Figure 1a). The grid is rectangular with the horizontal (x,
y) axes rotated 7� clockwise from north. The x axis is then
directed toward the coast, and the y axis is directed
alongshore, positive to the north. The velocity components
in the (x, y) directions are (u, v). The maximum grid
resolution is 2 km in the vicinity of Newport (44.6�N),
with decreased resolution toward the western, northern and
southern boundaries. The vertical resolution is 31 s layers,
with eight levels concentrated near the surface and four near
the bottom in order to resolve boundary layers. Maximum
depth is set at 1000 m. The alongshore boundary conditions
are periodic, with the bathymetry and coastline smoothed
and matched near the south and north ends of the domain.
Offshore boundary conditions are no flow for the depth-
averaged u, no gradient for v, and radiation for all other
variables.
[9] Although solutions obtained with this periodic chan-

nel geometry have limitations, some of which are discussed
in section 3, extensive model data comparisons docu-
mented by Oke et al. [2002b] have shown that many
important aspects of the shelf flow are successfully repre-
sented in this domain. The reason for this success is
presumably that off Oregon the coastal currents are strongly
wind-driven, with much of the mesoscale behavior on the
shelf dominated by local flow-topography interaction. We
emphasize that the evaluation of model-only solutions by
Oke et al. [2002b] includes favorable comparisons with
measurements of depth-dependent currents and temperatures
from moorings, of surface currents from shore-based HF
radars, and of hydrographic measurements from repeated
MINIBAT conductivity-temperature-depth (CTD) sections
as well as from horizontally extensive SEASOAR CTD
surveys. The encouragingly good agreement between the
model and observations found in that study motivates the use
of a similar model setup for the DA experiments reported
here.
[10] A detailed map of the model bathymetry in the

area of the COAST observational program is shown in
Figure 1b. Near latitude 45�N, the shelf is narrow with
relatively small alongshore variations. Farther to the south
the shelf becomes wider and encompasses the topographic
irregularities associated with Stonewall Bank, Bank Per-
petua, and Heceta Bank. South of Heceta Bank, the shelf
narrows again.
[11] The mooring locations are shown in Figure 1. The

northern line of moorings, referred to as Line N, is at 45�N,
and includes NSB (North Shelf Break), NMS (North Mid-
shelf), and NIS (North Inner Shelf). Correspondingly named

Figure 1. Maps of Oregon shelf with circles showing
mooring locations in May–August 2001. (a) Computational
domain with grid cells along the western and southern
boundaries showing the rectangular grid resolution; the
bathymetric contour interval is 100 m. (b) Close-up view of
the mid-Oregon shelf; the bathymetric contour intervals are
10 m (from 10 to 200 m) for the shaded lines and 100 m for
the solid lines. S, P, and H denote banks: Stonewall,
Perpetua, and Heceta.

C02022 KURAPOV ET AL.: DISTANT EFFECT OF ASSIMILATION

2 of 20

C02022



moorings SSB, SMS, and SIS form Line S at 44.2�N. These
six moorings are a part of the COAST effort. The seventh,
GLOBEC mooring (NH10) is installed midshelf off New-
port (44.65�N). Upward looking acoustic Doppler profilers
yield horizontal velocities in 2 or 4 m vertical bins with a
sampling interval of 120 s. Instrumental parameters includ-
ing manufacturers, acoustic frequencies, depths of installa-
tion, and the vertical data resolution are given in Table 1.
[12] The model is forced with alongshore wind stress and

surface heat flux. Wind speed, short wave insolation, air
temperature, and relative humidity necessary for the calcu-
lation of wind stress and heat flux were measured at a
meteorological buoy located next to the NMS mooring. In
our limited-area model, these inputs are assumed to be
spatially uniform. Heat flux is computed following Beardsley
et al. [1998] using modeled spatially variable sea surface
temperature and surface currents. Since our focus is on
subinertial wind-forced ocean variability occurring on tem-
poral scales of several days, the wind stress and the
measured variables used for heat flux computation are
low-pass filtered with a 40 hour half amplitude filter. The
mooring data used for assimilation and validation and the
model time series used for statistical analysis are low-pass
filtered as well.
[13] Initial conditions for model runs are zero velocity

and horizontally uniform potential temperature T and
salinity S, with vertical profiles of T and S taken as the
mean observed profiles from June, 1961–1971, at a

station 45 nautical miles offshore of Newport. The model is
spun-up with southward alongshore wind stress of constant
magnitude 0.05 Pa for 10 days, followed by a 5 day relaxation
period with no wind. After the end of this 15 day spin-up,
beginning on yearday 141 (the first day when data from all
the 7 moorings are available), observed wind stress and heat
flux are applied. Data assimilation starts on the same day and
the model is run for 96 days, covering the period of operation
of the COAST moorings.
[14] A relatively short spin-up period is chosen because

of limitations the periodic channel puts on the length of the
model run. The study of Oke et al. [2002b] showed that the
solution quality can be sensitive to the choice of initial
spatially uniform T and S profiles. At the outset, we
performed similar sensitivity studies using historical vertical
profiles at different distances from coast and averaged over
different periods (May, June, spring, or summer). The
profiles that provided the best results in terms of model
data velocity statistics were then used for data assimilation
experiments. Further tests were conducted to verify that the
choice of initial T and S does not affect our conclusions
about the distant effect of data assimilation.

3. Data-Model Comparison

[15] During the study period, wind stress is predominantly
southward and upwelling favorable (Figure 2). Figure 3a
shows the time-averaged model surface currents and local
flow Rossby number, i.e., the time-averaged surface vortic-
ity divided by the Coriolis parameter f: z/f = (vx � uy)/f,
where subscripts denote differentiation. The standard devi-
ation of z/f and the streamlines of the time-averaged depth-
integrated transport from the model solution without DA are
shown in Figure 3d. The upwelling jet generally follows
bathymetry and detaches from the coast south of Line N.
The values of z/f are close to 1 on the inshore side of the jet,
indicating the importance of nonlinear advective effects in
that part of the flow. The jet crosses isobaths and separates
toward deep water south of Heceta Bank (43.9�N), where
the shelf narrows again.
[16] Modeled and observed time series of the depth-aver-

aged velocity at the mooring sites are shown in Figure 4.

Table 1. Acoustic Doppler Profiler Parameters: Manufacturers,

Acoustic Frequency, Water Depths of Moorings, and Vertical

Resolution of Processed Data

Mooring Manufacturer
Frequency,

kHz Depth, m

Resolution, m

From To Interval

NSB Sontek ADP 250 130 114 18 4
NMS RDI ADCP 300 81 72 12 2
NIS RDI ADCP 300 50 42 10 2
NH10 Sontek ADP 500 81 66 10 2
SSB RDI ADCP 300 132 116 16 4
SMS Sontek ADP 500 99 91 9 2
SIS RDI ADCP 300 51 42 8 2

Figure 2. Wind stress during the Coastal Ocean Advances in Shelf Transport (COAST) 2001 upwelling
experiment. The alongshore component has a time average of �0.020 Pa and a standard deviation of
0.054 Pa.
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Qualitatively, model data agreement is better at the moorings
on the more alongshore uniform narrow shelf (Line N) and at
the inner-shelf mooring of Line S. At SSB the modeled
current is significantly larger than observed, especially after
day 191. A possible explanation for the discrepancy at SSB,
and the statistics of model data differences at the mooring
sites, are discussed below.
[17] In Figure 5, temperature time series from the model

and from the six COAST moorings are compared at depths
near the surface and close to 20 m. Model temperatures are
generally close to observations, indicating that evolution of
the model temperature fields from specified initial values
(as influenced by upwelling flow processes and by surface
heat flux) is in general reasonably accurate. However, at
SSB, the model is erroneously warmer (at both depths)
during days 190–220. This behavior does not appear to
result from overheating the water mass repeatedly reenter-
ing the periodic channel, since the temperature at the Line N

is correct for those days. After day 220, model temperature
at SSB returns more closely to observed values.
[18] To help understand the reasons for the poor model

performance at SSB in the second part of the study period it
is instructive to examine available AVHRR satellite SST
images. On day 183 (Figure 6a), upwelled water colder than
about 12�C is confined to the shelf, with the offshore extent
of this observed cold surface water similar at the southern
and northern ends of our periodic channel. On day 189
(Figure 6b), upwelled water is still confined to the 200 m
isobath in the area near the moorings. At the same time,
however, current separation off Cape Blanco, at the south-
ern edge of our domain near 43�N, is apparent. This feature
is not represented accurately in our periodic channel setup.
In the images on days 205 and 211 (Figures 6c and 6d),
patches of upwelled water (12�–14�C) are seen to extend to
the west of the mid-Oregon shelf, where the moorings are
installed. These images evidently reflect large offshore

Figure 3. Maps of surface current, surface scaled vorticity z/f, and streamlines of depth-integrated
transport, days 146–191. (top) Time-averaged surface current (vectors) and z/f (color). (bottom) Standard
deviation of z/f (color) and time-averaged transport streamlines (dashed contours) through locations NSB,
NMS, NIS, and SSB. (a, d) Model-only solution. (b, e) DA (NSB+NMS). (c, f) DA (SSB+SMS).
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fluctuations of the coastal jet that are not easily reproduced
by the periodic channel model. This may explain the
discrepancy between modeled and observed currents and
temperature at the SSB in the model after day 190. Maps of
surface HF radar currents averaged over the first and second
halves of the study period (P. M. Kosro, personal commu-
nication, 2003) show that the upwelling jet is deflected
significantly to the west during the second half, consistent
with impressions from the SST maps. Although the reasons
for the westward flow separation around Heceta Bank that
contributes to the mesoscale activity offshore are still not
entirely understood, it is possible that these events off the
mid-Oregon shelf are dynamically coupled with the sepa-
ration off Cape Blanco, 100–150 km to the south, by the
northward propagation of shelf flow disturbances as coastal
trapped waves. If so, remote forcing would be significant
for the ocean dynamics near SSB at least during the second
part of the study period and the limited-area periodic
channel model used here would not be capable of reproduc-
ing these separation effects.

[19] Statistical analyses of modeled and observed veloc-
ities are performed using time series for the first part of the
study period (days 146–191). The model data rms errors for
each mooring site are computed as

RMSE ¼ 1

2NK

XN
j¼1

XK
k¼1

uk;j � uok;j

� �2

þ vk;j � vok;j

� �2

" #1=2

; ð1Þ

where index k refers to vertical level (velocity bin) and
index j to time. The complex correlation is defined as the
correlation of the predicted and observed complex time
series u + iv, where i =

ffiffiffiffiffiffiffi
�1

p
[Kundu, 1976]. For RMSE and

correlation analysis, modeled (u, v) and observed (uo, vo)
time series are sampled each TI/4, where TI � 17 h is the
inertial period. The RMSE values for the model only and for
all the DA runs discussed here and the amplitudes of the
complex correlation of the depth-averaged modeled and
observed currents are given in Table 2. Applied to the wind-
driven circulation off Oregon, the 95% confidence limit for

Figure 4. Time series of depth-averaged current (cm s�1) at the seven mooring locations: model-only
solution (solid line), data (shaded line), u (thin line), and v (bold line). Statistical comparisons are
recorded in Table 2.
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Figure 5. Temperature time series at the moorings on lines N and S: model solution (solid line) and data
(shaded line). Bold lines are for a sensor closest to the surface, and thin lines for the depth close to 20 m.

Figure 6. Advanced Very High Resolution Radar (AVHRR) sea surface temperature (SST) images.
White contours are model bathymetry, each 100 m; circles show mooring locations.
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correlations using 45 day time series is estimated to be
about 0.5, similar to that found by Oke et al. [2002a]. At
Line N, model data correlations for the depth-averaged
currents for days 146–191 are near this limit; at SIS the
correlation is higher (0.69), and at NH10, SSB, and SMS,
where the flow is significantly complicated by the three-
dimensional bathymetry, correlations are low and not
statistically significant.
[20] Themodel describes variability of currents adequately

in terms of some criteria that are less stringent than the

model data rms error and correlation. For instance, variance
ellipses of the depth-averaged currents from the model and
the observations are close at all six mooring sites of Lines N
and S (Figure 7a), although the model significantly under-
estimates the variance at NH10. Also, the modeled mean
depth-averaged currents at all moorings on Line N and at
SSB are larger than observed. From the time-averaged
alongshore velocity profiles (Figure 8 (top)) we see that
the model correctly reproduces vertical mean shear over the
depth range of the velocity observations. In Figure 8 (bot-
tom) we compare alongshore components of the 1st empir-
ical orthogonal functions (EOFs) computed separately for
each mooring location, and we find similarity between
dominant modes of variability for the model and observa-
tions. In both cases the 1st EOF for each mooring explains
more than 30% of flow variability.

4. Data Assimilation Method

[21] The optimal interpolation (OI) DA algorithm we use
provides corrections to the model forecast solution sequen-
tially based on the forecast data differences. The corrected
analysis solution provides initial conditions for the next
forecast:

wa
t ¼ w

f
t þG dt �Hw

f
t

� �
; ð2Þ

where wt
f and wt

a are the forecast and analysis state vectors
at time t, vector dt is the data at this time, matrix H is the
data functional matching the state vector to the data, and G
is the gain matrix that is used to extrapolate observation
forecast differences onto the whole state space. The
definition of G is based on the Kalman filter theory [e.g.,
Miller and Cane, 1989]:

G ¼ PfH0 HPfH0 þ Cd

� ��1
; ð3Þ

where Pf is the forecast error covariance, Cd is the data error
covariance, and the prime denotes matrix transpose. If
estimates of Pf and Cd are correct and if the errors in the

Table 2. Model Data Velocity Error Statistics at the Mooring Sites

Calculated for Days 146–191: Root-Mean-Square Error (RMSE)

and Amplitude of Complex Correlation of the Depth-Averaged

Currentsa

Case NSB NMS NIS NH10 SSB SMS SIS

RMSE, m s�1

No DA 6.7 11.3 13.5 7.8 9.6 10.6 5.5
NSB+NMS 3.6 5.6 8.0 5.8 7.1 9.5 6.1
Line N 3.5 5.1 5.9 5.5 6.6 9.1 6.0
SSB+SMS 5.0 7.9 10.8 6.9 3.5 5.6 5.4
Line S 4.7 9.0 12.2 5.6 4.1 5.6 3.5
NSB 4.1 7.2 10.1 6.4 7.3 10.0 6.1
NMS 4.0 5.7 8.5 5.7 7.3 9.7 5.8
NIS 4.7 6.0 6.1 5.8 7.2 10.3 6.3
NH10 4.5 6.9 9.1 4.7 8.0 9.1 6.2
SSB 6.3 10.4 12.9 7.7 3.6 9.3 4.8
SMS 5.8 10.6 12.9 6.8 9.8 6.9 5.3
SIS 8.1 14.1 17.0 12.5 10.9 9.9 4.5

Amplitude of Complex Correlation
No DA 0.45 0.46 0.56 0.18 0.36 0.26 0.69
NSB+NMS 0.87 0.90 0.82 0.71 0.70 0.09 0.59
Line N 0.88 0.93 0.93 0.74 0.73 0.08 0.59
SSB+SMS 0.82 0.79 0.71 0.63 0.85 0.68 0.69
Line S 0.75 0.69 0.62 0.73 0.78 0.68 0.92
NSB 0.82 0.82 0.73 0.65 0.65 0.08 0.58
NMS 0.84 0.89 0.79 0.72 0.75 0.12 0.64
NIS 0.72 0.87 0.92 0.69 0.73 0.26 0.50
NH10 0.77 0.82 0.79 0.83 0.66 0.09 0.55
SSB 0.69 0.71 0.62 0.67 0.87 0.30 0.79
SMS 0.76 0.68 0.72 0.47 0.45 0.54 0.75
SIS 0.33 0.41 0.46 0.18 0.18 0.14 0.85

aItalicized values are for the sites where data are assimilated.

Figure 7. Mean and variance ellipses of the depth-averaged current at mooring locations, observations
(shaded), and a model solution (solid), days 146–191: (a) no DA, (b) DA (NSB+NMS); and (c) DA
(SSB+SMS). In each plot the top row from left to right is NSB, NMS, and NIS, the middle row is NH10;
and the bottom row from left to right is SSB, SMS, and SIS.
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forecast and data are statistically unbiased, each element of
wt
a has the minimum error variance among all possible

solutions. Possible forecast bias in our model is discussed in
the end of section 5.
[22] In OI a time-invariant Pf is assumed. In principle, Pf

may indeed become stationary after a long enough integra-
tion time, for instance, if the dynamical system is autono-
mous (model propagator is time invariant) and dissipative,
data are assimilated at equal time intervals, and H and Cd do
not change with time [Kurapov et al., 2002]. In the context
of a primitive equation coastal model, the assumption that Pf

is stationary is certainly an approximation that yields a
suboptimal analysis. For instance, advection, known to be
significant in this system, makes Pf state-dependent. So, in
OI, optimality is traded for computational efficiency. Note
that although Pf is of tremendous size, only a much smaller
matrix PfH0 is needed in (3). In the case of direct measure-
ments of the elements of the state vector, each column of
PfH0 is the forecast error covariance between all elements of
the state vector and a measured variable. An estimate of the
forecast error covariance, conditioned upon previously
assimilated data, can be computed using the estimate of
the error covariance in the model-only solution not con-
strained by the data [Kurapov et al., 2002]:

PfH0 ¼ Pm
t;tH

0 � S Qþ Cð Þ�1
S0H0: ð4Þ

Here Ps,q
m is the covariance of errors in the model

estimates w at times s and q (in a solution without
DA); S = {Pt,1

m H0jPt,2
m H0j. . .jPt,t�1

m H0} are lagged model
error covariances, where the second subscript index in

each block refers symbolically to the past assimilation
time; Q is the matrix with block elements HPs,q

m H0, 1 
 q,
s 
 t � 1; and C is block diagonal with Cd replicated on
the main diagonal. The relation in (4) has been derived
under an assumption that data errors are not correlated in
time. We retain this assumption for the sake of simplicity,
even though data filtering implies a nonzero temporal
decorrelation scale for the data errors. Since we find a
stationary estimate of the forecast error covariance, no
time index is associated with the notation for Pf. For Ps,q

m

time indices are retained to refer to time lags. The model
error covariance Ps,q

m required in (4) is assumed to depend
only on the time lag s � q.
[23] To estimate Ps,q

m H0, the generalized inverse theory
could in principle be employed. In the language of the
variational generalized inverse method [e.g., Bennett,
2002], columns of Ps,q

m H0 are representors evaluated at
time s corresponding to the measurements H at time q.
Thus estimates of the model error covariance Pm

s,q neces-
sary for the computation of Pf could be obtained from a
series of runs using a tangent linear and adjoint codes. At
present, these tools in a form applicable to a coastal
circulation problem are in the development stage [Moore
et al., 2004]. Here, to obtain an approximate stationary
estimate of Ps,q

m , we resort to an ensemble technique.
Similar to Oke et al. [2002a], a stationary estimate of the
model error covariance is assumed to be proportional to
the model state covariance:

Cov wi;wj

� �
¼ Std wið ÞStd wj

� �
Corr wi;wj

� �
; ð5Þ

Figure 8. Vertical profiles of (top) mean alongshore currents at the mooring sites and (bottom)
alongshore component of the 1st empirical orthogonal function (EOF) computed separately for each
mooring site, days 146–191, model-only solution (solid lines) and observations (shaded lines). Numbers
show the percentage variance explained by the EOF.
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where wi and wj are elements of the state vector, and the
standard deviation (Std) and the correlation coefficient
(Corr) are computed by temporal averaging. In our study, to
obtain stable model statistics, model correlation coefficients
in (5) are first obtained for each solution from an ensemble
of nine 50 day model runs. Each run was forced with
observed winds for May–June for different years between
1992 and 2002 and with heat flux based on the time-varying
air temperature observed for the same years at a NOAA
National Data Buoy Center (NDBC) buoy (44.62�N,
124.53�W), seasonally varying short wave insolation, and
constant relative humidity (85%). Since upwelling intensity
changes from year to year, to obtain the model error
covariance the correlations in (5) are scaled with standard
deviations computed for summer 2001. Note, that since time
averaging is involved, the number of degrees of freedom in
the ensemble of model states used to estimate stationary
statistics is equal to the number of model solutions (nine)
times the number of degrees of freedom in a 50 day low-
pass filtered model time series, which is approximately 15
[see Oke et al., 2002a].
[24] In theory, Pt,s

m is defined as hdwt
mdws

m0i, where dwm =
wt
m � wt is the difference between the model solution and

the truth at time t, and hi denote an average over an
hypothetical ensemble generated in accordance with the
assumed statistics of errors in inputs (forcing, initial, and
boundary conditions) [see Bennett, 2002]. In our case,
where Pt,s

m is based on (5), ensemble averaging is replaced
with temporal averaging under the assumption of stationar-
ity, and the unknown true state is replaced with the time
mean. Despite these approximations our estimate of Pt,s

m

should represent correctly the spatiotemporal error correla-
tions associated with alongshore advection and coastal
trapped wave propagation. For instance, since the error is
advected with the current, we expect similarly higher
correlations along the path of the upwelling jet both for
modeled velocities and their errors.
[25] In the way the ensemble of model runs used for

estimating Pm was generated, model solution error is
associated implicitly with uncertainty in the wind. In fact,
other error sources such as boundary and initial conditions,
unresolved small-scale processes, etc. may also be impor-
tant. On the basis of theoretical analysis of the error
covariance evolution in a simplified coastal ocean problem
[Kurapov et al., 2002], the spatiotemporal structure of
additive components of Pm associated with these different
error sources is expected to be similar, defined primarily by
the direction and speed of advection and coastal trapped
wave propagation and to be represented well by the covari-
ance computed as described above.
[26] In this study we choose to provide correction only to

velocities u and v, and allow other variables (SSH, potential
temperature T, salinity S, etc.) to evolve as a result of
dynamical adjustment. So, in (2)–(4), elements in rows of
PfH0 corresponding to those other variables are zeros.
Although forecast errors in the velocity are in general
correlated with errors in the scalar fields, such as T and S,
the cross correlation estimated in the way described above is
probably not always adequate. For instance, the approach
setting cross correlations between velocities and other fields
to zero was found to be more accurate for the prediction of
T than that based on a fully multivariate forecast covariance.

Note that in the case of a geostrophically balanced along-
shore current, velocity contains information only about
density gradient, not the density itself. However, in our
case the OI with a fully multivariate Pf would provide
changes to the density based on velocity forecast data
misfits.
[27] Lagged model covariances have not been used before

for the computation of Pf based on (4) in a realistic setting.
Oke et al. [2002a] essentially assumed that Pf = aPt,t

m, with
the coefficient a, 0 < a < 1, tuned to provide the best fit to
independent data. Although such an assumption may yield a
practically satisfactory analysis, the use of (4) is more
methodologically correct and not significantly more diffi-
cult. The reduction of variance in Pf, compared to Pt,t

m, is
modeled explicitly as the effect of previously assimilated
data. Also, as shown by Kurapov et al. [2002], (4) implies
that the spatial structure of Pt,t

m and Pf can be different. We
consider this issue further in section 7.
[28] In the computation of lagged model error correla-

tions we restrict ourselves to using lags 
5 days. Model
correlations for larger lags are small and can be neglected
(Figure 9). The panels in Figure 9 show the correlations of
the model velocity components vt(x, t) with vt(xo, t � lag),
where vt is the horizontal velocity tangent to the mean
transport streamline through the observation location
(Figure 3d), x denotes the point along this streamline at
the observation depth, and xo is the observation location.
The correlations are shown as functions of the distance
along the streamline and the lag.
[29] In the spatiotemporal structure of Pt,s

m , defined here
by lagged correlations, we should expect to see character-
istics corresponding to propagating modes of a (tangent

Figure 9. Lagged model solution correlation of vt(s, t) and
vt(so, t � lag), where vt is the model velocity tangent to the
mean depth-integrated transport streamline, taken at a
constant depth corresponding to the depth of the measure-
ment location, s is the distance along the streamline
(measured from the south boundary), and s = so is the
measurement location. For reference, dashed white lines
show characteristics of waves of type (8) traveling with the
speed of c = �20 km d�1 to the left and c = 100 km d�1 to
the right, coming through the observation location at zero
lag.Measurement sites are (a) NSB at 18m, (b) NMS at 12m,
(c) SSB at 16 m, and (d) NIS at 10 m.
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linear) model [e.g., Bennett, 2002, chap. 1]. In Figure 9 a
characteristic corresponding to southward advection is most
apparent, indicated by the nearly vertical dashed line.
Northward propagating coastal trapped waves (CTWs;
suggested by the more horizontal line in Figure 9) are a
dominant feature in the idealized analytical coastal repre-
sentor model of Kurapov et al. [2002], but these waves do
not have a clear manifestation in the lagged correlation, for
a number of reasons. First, the most energetic CTWs
propagate with speeds exceeding 100 km d�1 [Brink,
1991] and our periodic channel domain is too short
(350 km) to see them clearly over large distances. Also,
the limited-area periodic channel does not support CTWs
with large alongshore scales.

[30] Each column of PfH0 can be plotted as a 3-D,
multivariate field. In Figure 10, we show the velocity
components of these fields in horizontal and vertical
cross-shore sections through the observation location for
the columns corresponding to v measurements at four
mooring sites. Sites NMS and SSB are chosen since they
are closest to the core of the modeled upwelling jet; the two
other sites are the near-shore NIS and SIS. In horizontal
section plots of v-v covariances (Figures 10c, 10g, 10k, and
10o) alongshore spatial scales are larger than cross-shore
scales. The v errors are positively correlated with u errors in
the surface Ekman layer, as best seen in cross-shore vertical
sections (Figures 10b, 10f, 10j, and 10n). The v-v covariance
corresponding to the measurement at NMS (Figure 10c)

Figure 10. Horizontal and vertical cross-shore sections of the forecast error covariance PfH0 (cm2 s�2)
corresponding to the v observation at the upper profiler bin of moorings: (a–d) NMS, at 12 m depth; (e–
h) NIS, at 10 m; (i–l) SSB, at 16 m; and (m–p) SIS, at 8 m. The horizontal and cross-shore sections are
through observation locations. Plots in columns 1 and 3 show u-v covariances, and columns 2 and 4 show
v-v covariances. Horizontal coordinates show the distance from the coast (km).
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shows larger covariability in the direction of the upwelling
jet, deflected from the coast. In the covariance corresponding
to the measurement at SSB (Figures 10i, 10j, 10k, and 10l)
short horizontal scales are introduced by bathymetry. In the
vertical cross sections the maximum of v-v covariance
corresponding to the inner-shelf observation locations
(Figures 10h and 10p) is closer to the shore and the
surface than the observation point, consistent with an
analytical representor solution [Scott et al., 2000]. How-
ever, in horizontal sections covariances for NIS and SIS
(Figures 10g and 10o) look suspicious because they have
large alongshore scales and are confined near the coast. An
artificially large alongshore correlation scale may result
from the local response in shallow water to the spatially
uniform winds used in the ensemble of solutions.
[31] In the work of Oke et al. [2002a], a time-distributed

averaging procedure was designed to overcome issues of
data compatibility and initialization, which made the algo-
rithm more complicated than the concept expressed by (2).
In particular, a low-pass filtered forecast was matched to
low-pass filtered observations. We employ a faster scheme
that was found to yield results of the same accuracy. In our
implementation, the model is integrated forward from t = 0
to t = 1/4 TI, where TI is the inertial period. The correction
term is based on the difference of the low-pass filtered data
and the instantaneous forecast at t = 1/4 TI. Then, the model
is restarted at t = 0 and correction is imposed incrementally
over a quarter of TI so that by t = 1/4 TI the full correction
has been added. Then the whole process is repeated from t =
1/4 TI to t = 1/2 TI, and so on. Matching the filtered
observations to the instantaneous model output (instead of
low-pass filtered output) probably works because care is
taken to avoid excitation of high-frequency modes in the
solution by the use of low-pass filtered forcing variables.
[32] In this study, the data error covariance Cd is taken to

be equal to sd
2I, where I is the identity matrix.We choose sd =

0.1 m s�1. The measurement error for the moorings is
expected to be smaller. However, Cd should also account
for the error in H, mapping the data to the state vector. For
instance, since the model bathymetry is smoothed, mooring
locations in the model have to be moved to points with the
appropriate bottom depth, equal to the depth of actual
mooring sites. To examine solution sensitivity to the data
error variance, data assimilation computations have been
performed for a range of sd. Computations with sd in the
range from 0.05 to 0.15 m s�1 produce results of similar
quality. When data are assimilated with a very low value sd =
0.01 m s�1, the analysis is fit too closely, and data error not
consistent with the dynamics is assimilated into the model,
reducing solution quality.

5. Distant Effect of Assimilating Currents From a
Line of Moorings

[33] In this section we describe two series of experiments
in which moored currents are assimilated from either the
northern or the southern across-shore mooring line. The
results are verified by comparison to velocity data from
the moorings not used for assimilation. In the first series of
experiments, data from the inner shelf is omitted because of
concerns that the columns of PfH0 corresponding to the
inner-shelf sites reflect artificially long alongshore scales

(Figures 10g and 10o). In the second series data from the
inner shelf moorings are added.
[34] Since a large fraction of the velocity variability is

described by the depth average and the shear (see Figure 8),
measurements of u and v from only four equally spaced
acoustic profiler bins (Table 1) are assimilated (the upper-
most, lowest, and two in between). To check sensitivity to
the number of assimilated bins, experiments involving
assimilation of the currents from 7 bins distributed evenly
in the vertical were performed for comparison. Those
yielded results very similar to the cases with four bins.
[35] For brevity, different data assimilation cases pre-

sented below will be referred to by the mooring sites from
which data are assimilated, e.g., case DA (NSB+NMS)
means data from the two northern moorings are assimilated
and DA (Line N) means the data from all three moorings of
the line are used.
[36] In case DA (NSB+NMS), we first compare the

variance ellipses for the modeled and observed depth-
averaged currents and see improvement at NH10 and SSB
(Figure 7b). The model mean current at SSB, although
reduced, remains too large. Time series of depth-averaged
alongshore currents at NH10 and the moorings of Line S are
shown in Figure 11. Model-data velocity rms errors and
complex correlation amplitudes calculated for days 146–
191 are given in Table 2. At NH10, which is only 40 km
away from the assimilation site, improvement is obtained
for the whole 91 day analysis period. At SSB, sensible
improvement only occurs for days 146–191 (Figure 11).
For days 191–237, there is some improvement in variability
at this site, but the current is still much too large. No
improvement is obtained at the SMS or SIS, although at the
SIS accuracy in terms of rms error and correlation remains
reasonably good.
[37] In Figure 12, model-data error statistics for case DA

(NSB+NMS) are shown as a function of depth for each
mooring. Improvement at the NIS, SSB, and NH10 is
present throughout the water column, both in terms of rms
error and correlation. At these sites, the phase angle of the
complex correlation, which contains information about the
difference in orientation of the velocity vectors, is below
20� except close to the surface at the SSB.
[38] In case DA (SSB+SIS), the modeled and observed

mean depth-averaged currents at SSB are now close, since
the model is fit to the data at this site (Figure 7c). At the
SMS, the predicted variance is smaller than observed,
despite data being assimilated here. Data assimilation
improves the variance of the depth-averaged current at
NH10, 50 km upstream from the assimilation site. At the
moorings of Line N variance ellipses remain exceptionally
good. At the same time, data assimilation reduces the
magnitude of the mean current at the distant validation sites
more than necessary. Comparison of the observed and
modeled velocity time series shows improvement in terms
of the model-data rms error and correlation at Line N and
NH10 (Figure 13, and Table 2). Compared to the case of no
DA, improvement is obtained throughout the water column
(Figure 14), except for the rms error close to the surface at
NMS and NIS. At the same time, the model data correlation
is improved there.
[39] At the surface, DA reduces the time-averaged current

and the vorticity z on the inshore side of the upwelling jet
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(Figures 3b and 3c). The variance in z is not affected as
much (Figures 3e and 3f). In case DA (NSB+NMS) mean
depth-integrated transport streamlines are not affected
significantly by data assimilation (Figure 3e). In case
DA (SSB+SMS), the transport streamlines (Figure 3f)
indicate that the jet is closer to the coast than in the
model-only case, especially over, and to the south of
Heceta Bank. However, at the same time the modeled
mean depth-averaged current vector at NH10 is directed
less offshore than the corresponding observation (see
Figure 7c). Figure 3f also suggests that assimilation of
data from Line S has a strong smoothing effect on the
flow field in the region directly south of that line. This
issue is addressed in our follow up manuscript [Kurapov et
al., 2005].
[40] In both DA cases described above, the model

constrained by the data fails to reproduce the patches of
cold water extending offshore that are seen in the satellite
SST images during the second part of the study period
(see Figures 6c and 6d). This is in spite of the fact that in
case DA (SSB+SMS) the model is fit to the velocity data
at the SSB. In section 3 we hypothesize that this
separation may be influenced by remote forcing. In the
present model setup data assimilation does not change the
nature of the boundary conditions at the south boundary
relative to that at the north boundary and the analysis
solution remains periodic in the alongshore direction.
Unless the boundary is open, data assimilation is not
effective in reducing the solution error associated with
remote forcing.
[41] Analysis of terms in the depth-averaged momentum

equation allows us to check how large the DA correction is

and to see if dominant term balances are preserved. In
Figure 15, time-averaged dynamical balances are shown in
the area between the moorings of Line N and of Line S. The
upper plots correspond to the model without DA, and the
lower plots are for case DA (SSB+SMS). To better represent
the alongshore direction of the mean flow, the terms are
projected onto the approximate direction of the upwelling
jet, indicated by the offshore slanting direction of the longer
side of the box surrounding the analyzed area. Shown in the
figure are the ageostrophic (the Coriolis and pressure
gradient terms combined), horizontal advection, surface
and bottom stress, and the DA correction terms all written
on the left hand side of the equation. The time-averaged
tendency term is close to zero and is not shown. The
contribution of the horizontal viscosity term to the dynam-
ical balances is small on the shelf [Oke et al., 2002a] and
this term is added to the nonlinear advection term, for
completeness. The main balance in the model is between
the ageostrophic and nonlinear terms. Qualitatively, this
balance is preserved in the DA solution, though both terms
are reduced in amplitude. The time-averaged correction
term has the same sign and magnitude as the bottom stress,
and this tends to reduce the southward current. Assimilation
of the currents at Line S provides a large scale correction,
smooth in the vicinity of the data sites. Similar conclusions
are reached based on analysis of case DA (NSB+NMS) (not
shown).
[42] Adding the data from NIS to the assimilation set

NSB+NMS does not have a significant impact on results
(compare rows in Table 2 corresponding to cases NSB+NMS
and Line N). This suggests the data from mooring NIS is
redundantwith data fromnearby sitesNSB andNMS. Indeed,

Figure 11. Time series of depth-averaged alongshore current (cm s�1) at the four mooring locations,
NH10 and Line S. Solution DA (NSB+NMS) is the bold solid lines, the model solution without DA is the
thin solid lines, and validation data are the shaded lines. Statistical comparisons are recorded in Table 2.
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case DA (NSB+NMS) provides significant improvement at
NIS (see Figure 12). If currents from the SIS are assimilated
together with data from SSB and SMS, performance at
Line N, especially at the mid- and inner-shelf, is worse
than in case DA (SSB+SMS) (compare rows in Table 2
corresponding to cases SSB+SMS and Line S). This
supports our inference that Pf corresponding to the inner-
shelf data is not reasonable in the far field. However, at
the same time, at NH10, case DA (Line S) yields better
results than case DA (SSB+SMS). Thus the DA system
does recover useful information from SIS to constrain the
solution near NH10 in the separation zone inshore of the
upwelling jet.
[43] Comparison of model-only and data assimilation

solutions suggests that the forecast may be biased, predict-
ing on average a larger southward current than observed.
Vertical profiles of time-averaged differences between ob-
served and forecasted alongshore velocities for days 146–
191 are plotted in Figure 16 (solid lines) for cases DA
(NSB+NMS) (plots a and b) and DA (SSB+SMS) (plots c
and d). Dashed lines in these plots show 95% confidence
limits for the means, assuming 15 degrees of freedom in the

45 day low-pass filtered time series [see Oke et al., 2002a].
If data errors are assumed to be unbiased, the bias in the
data forecast differences must be attributed to the forecast
bias. On the path of the upwelling jet, at NMS [in case
DA (NSB+NMS)] and at SSB (in case DA (SSB+SMS)),
the positive bias is statistically significant in the lower part
of the water column. One possible source for the forecast
bias may be insufficient horizontal resolution that does
not allow short scale (8–10 km) frontal instabilities to
develop. These instabilities are found, e.g., in the 1 km
resolution model of Durski and Allen [2005]. As a result,
the upwelling current in the coarse resolution model may
be larger because energy is not lost to small scale
fluctuations and eddies. To compensate for this deficiency,
data assimilation introduces a large scale correction of the
same sign as the bottom drag. Other possible sources for
the forecast bias are improperly represented large scale
pressure gradients and insufficient form drag over
smoothed model bathymetry.
[44] We attempted to correct the forecast bias sequentially,

following the approach of Dee and da Silva [1998]. This
approach requires specification of a statistical model for the

Figure 12. Model data velocity statistics versus depth at the seven mooring sites for the model-only
solution (thin lines) and DA (NSB+NMS) (bold lines) for days 146–191: (top) rms error and the (middle)
amplitude and (bottom) phase of the complex correlation coefficient. Each column of plots corresponds
to a mooring. Plots on the shaded background are for the assimilated sites.
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bias, including a bias prediction error covariance. Since we
do not have enough information for an informed choice of
such a covariance, we tried a covariance proportional to Pf

following Dee and da Silva [1998]. Unfortunately, account-
ing for the bias in this way did not help to improve the
solution quality compared to the DA cases based on the bias-
free statistical model and these efforts were abandoned.

6. Assimilation of Currents From a Single
Mooring

[45] It is uncommon to have current profiles from as
many as 7 moorings available in a coastal area spanning
100 km alongshore. To guide the design of a cost effective
coastal observing system, it is important to know how well
the model circulation is constrained by data from a smaller
set of moorings and what the best placements for these
moorings should be. In the previous section we have shown
that the use of two moorings on a cross-shore line provides
useful corrections at a distance of 90 km along the jet path
(both upstream and downstream). It has also been shown
that in some cases additional data do not bring extra benefits
or, if model covariances are not accurately specified, may
even reduce the accuracy of the prediction.
[46] In this section we investigate the net effect of

assimilation of data from only one mooring. The model
data error statistics for these 7 cases are given in Table 2.
Some of the conclusions from this table are that case DA
(NMS) provides solutions at NH10 and SSB with accuracy
very close to case DA (NSB+NMS). Case DA (NIS) also
performs well at those validation sites, although results at
SIS are not as good as in case DA (NMS), both in terms of

rms error and model data correlation. Note that in case DA
(NIS) improvement is attained at the SSB, although the
forecast error covariance of velocities at the NIS and SSB is
small (see Figure 10g). At the same time, case DA (NIS)
makes the solution at SIS significantly worse than the
model-only prediction. This reduction in the solution quality
evidently is associated with the artificially large alongshore
scale of the forecast error covariance. Quite surprisingly, even
though DA (Line N) does not result in large gains to the
solution quality at SMS, assimilation at the SMS alone, where
the flow variability is not strongly correlated with the wind
stress, yields improvement at the sites of Line N of about the
same magnitude as that in case DA (SSB). Assimilation of
data from the SSB or SMS appears to be more useful for the
analysis in the northern part of the domain than at nearby sites
of Line S. Finally, solution DA (SIS) is worse than the
model solution everywhere away from the assimilation
site.
[47] For the cases involving assimilation of data from one

mooring we compare the actual and expected error variance
improvement resulting from DA. Such a comparison pro-
vides a consistency test of our statistical hypothesis about
errors in the forecast and data. In particular, it provides
additional indications of the deficiency of the forecast error
covariance for inner-shelf data.
[48] The actual improvement (AI) in the model data error

variance is computed as

AI ¼ RMSE2
m � RMSE2

a; ð6Þ

where RMSE is the model data rms error (1) with respect to
a chosen validation data set, and indices m and a stand for

Figure 13. Time series of depth-averaged alongshore current (cm s�1) at four mooring locations, Line
N and NH10. Solution DA (SSB+SMS) is the bold black lines, the model solution without DA is the thin
black lines, and validation data are the shaded lines. Statistical comparisons are recorded in Table 2.
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the model-only and analysis solutions, respectively. Note
that in our case RMSE computation involves depth
averaging of squared model data differences. The expected
improvement (EI) in the error variance is computed given
the assumptions about the model and data errors. In general
terms, the diagonal elements of the model error covariance
Pt,t
m should be compared with those of the analysis

covariance matrix Pa [e.g., Miller and Cane, 1989]:

Pa ¼ Pf �GHPf : ð7Þ

Note that in the RMSE computation (1) the model (or
analysis) solution is compared to the data time series,
whereas in the definition of Pm and Pa the solution is
matched to the (unknown) truth, rather than the data. To
make EI comparable to AI (6), it should also be computed
based on the difference of the model-data and analysis-data
error variances, rather than model-truth and analysis-truth
error variances. An analysis that provides a relevant
expression for EI is given in Appendix A.
[49] Comparisons of the actual and expected improve-

ments in the model data error variance, utilizing (6) for AI

and (A3) for EI, are shown graphically in Figure 17. The
areas of the circles in this graph are proportional to the
magnitude of variance improvement; clear (black) circles
are for positive (negative) values. Each row corresponds to a
DA case, and columns to the validation sites. For each
validation site, the left and right columns correspond to AI
and EI, respectively. In positions corresponding to EI at the
assimilation sites, where two concentric circles are plotted,
the inner circle shows the magnitude of the first term of
(A3). Except for NH10 and SIS, the effect of the second
term in (A3) is to bring EI in closer agreement with AI.
[50] The actual effect of assimilating data from NSB,

NMS, NIS, or NH10 is comparable to the expectation when
evaluation is done at the same group of sites. For instance,
compare the general similarity in AI and EI for these four
sites in the upper left corner of Figure 17. At the same time,
as a result of assimilation of data from one of these four
moorings, the actual improvement is larger than the expec-
tation at SSB. In each of these four cases the AI is negative
at SIS.
[51] The most striking discrepancy is between the actual

and expected improvement in case DA (SIS). At the

Figure 14. Model data velocity statistics versus depth at the seven mooring sites for the model-only
solution (thin lines) and DA (SSB+SMS) (bold lines): (top) rms error, (middle) the amplitude, and
(bottom) the phase of the complex correlation coefficient. Each column of plots corresponds to a
mooring. Plots on the shaded background are for the assimilation sites.
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moorings of Line N, NH10, and SSB the analysis solution is
significantly worse than the model-only solution, contrary
to our expectations. The actual improvement at the assim-
ilation site is significantly smaller than the expectation, in
contrast to all the other sites. Note that from the statistical
perspective the average improvement should never be
negative, so the negative values of AI indicate a problem
with the statistical hypotheses assumed in the data assimi-
lation method. We think that the instances where the actual
improvement is negative arise from the erroneously long

spatial scale of Pf in shallow water, as previously discussed
in connection with Figure 10. Thus PfH0 corresponding to
the inner-shelf locations should be reevaluated to make
better use of this data.

7. Role of Propagating Modes

[52] Correction at a distance from the assimilation site
may be applied instantly if the scale of the forecast error
covariance is large enough, or may be built up gradually as

Figure 15. Terms in the time- and depth-averaged momentum equations projected onto the approximate
direction of the upwelling jet (the direction of projection coincides with the orientation of the longer side
of the border surrounding the analysis area). (top) Model-only solution. (bottom) DA (SSB+SMS). From
left to right, plots are advection plus horizontal diffusion, ageostrophic (sum of the Coriolis force and the
pressure gradient terms), surface stress, bottom stress, and DA correction terms. The time-averaged
tendency term (not shown) is close to zero in both cases.

Figure 16. Alongshore velocity data forecast differences at assimilation sites, (a, b) cases DA
(NSB+NMS) and (c, d) DA (SSB+SMS). The solid line is the time average, and dashed lines show the
95% confidence limits.
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a result of dynamical adjustment. For instance, in our case
corrections introduced near the data site may be advected to
the south with the upwelling jet. This in part explains why
assimilation of currents at Line N positively affects the
solution at NH10 and especially at SSB, which is separated
by a distance exceeding the scale of the implied forecast
error covariance in that direction (e.g., see Figure 10c). At
the same time, there was limited or no improvement on the
inshore side of the upwelling jet in the separation zone near
Heceta Bank. Representer solutions for linear coastal mod-
els suggest that corrections can be propagated with the free
modes of the dynamical model [Kurapov et al., 2002,
2003]. As noted in section 4, coastal trapped waves prop-
agating to the north are difficult to detect in the model
solutions obtained in a short periodic channel. So the
reasons for improvement to the north of the assimilation
site, taking into account the relatively short spatial scales of
Pf corresponding to SSB (see Figures 10i and 10k), remain
an open question, but presumably are related to the dynam-
ical effects associated with coastal trapped waves. Repre-
senter computations using the tangent linear and adjoint
codes, when those become available, may provide new
insights into that issue.
[53] A better understanding of the role of propagating

dynamical modes in data assimilation would help in de-
signing a coastal observing system, to optimize deployment
of a small set of instruments that most effectively improve
the model predictions. Some of the basic effects of the
propagating modes relevant to OI, for instance their effect
on the spatial structure of the forecast error covariance, can
be illustrated in a model based on the simple wave equation

@u

@t
þ c

@u

@y
þ au ¼ f y; tð Þ þ � y; tð Þ; ð8Þ

subject to the initial condition

u y; 0ð Þ ¼ 0: ð9Þ

In (8), the scalar u is a function of the coordinate y (�1 < y
< +1) and time t, the constant c is the wave speed, a is the
dissipation parameter, f(y, t) is the deterministic forcing,
and �(y, t) is the random forcing error. In an idealized sense,
equation (8) may be considered a conceptual model
describing either dynamics of long coastal trapped waves
[Brink, 1991] or advection by the background current. The
forcing error is assumed to be unbiased with a covariance
implying that errors are correlated in space, but not in time:

h� y1; t1ð Þ� y2; t2ð Þi ¼ d t1 � t2ð ÞC y1 � y2ð Þ: ð10Þ

The solution to (8)–(9) is obtained by integration along
characteristics. The prior model solution um(y, t) is obtained
for � = 0. If t and to are large compared to the dissipation
time scale a�1, the covariance of the errors in the prior
model solution dum(y, t) = um � u is [e.g., Miller and Cane,
1989]

Pm y; t; yo; toð Þ � hdum y; tð Þ dum yo; toð Þi

� e�a t�toj j

2a
C y� yo � c t � toð Þ½ �: ð11Þ

Thus after a long enough integration time, Pm becomes
stationary. The lagged covariance (t 6¼ to) is obtained by
translation of a scaled shape C(y � yo) along the y axis.
[54] We utilize (11) to compute the forecast error covari-

ance (4) assuming u data are assimilated sequentially every
4 hours at y = 0, the forcing error covariance function is C =
exp[�(y � yo)

2/l2], where l = 50 km, the data error
covariance is Cd = 0.01 I, and a = 1/5 d�1. The forecast
error covariance PfH0 is shown in Figure 18 for two
different cases c = 30 and 100 km d�1 (dashed and solid
bold lines, correspondingly). As an effect of the data
previously assimilated in the wave model (8), the optimum
forecast error covariance is asymmetric with respect to the
observation location yo, with a shorter spatial scale in the
direction of wave propagation, even though Pm(y, t; yo; t) is
symmetric with respect to yo (thin line in Figure 18).

Figure 17. Actual AI and expected EI improvement in the
model data error variance resulting from assimilation of
currents from only one mooring. Rows in the table
correspond to different DA cases, and columns correspond
to evaluation sites. Empty circles mean positive improve-
ment, and filled circles mean that the DA model data error
variance is worse than that of the model-only solution. The
magnitude of the improvement is proportional to the area of
a circle (e.g., 28.1 cm2 s�2 for the circle in the upper left
corner). Inner circles in positions with two concentric circles
show the magnitude of the first term in (A3).

Figure 18. Prior model and forecast error covariance of
u(y) and u(yo) for the model based on the wave equation (8)
assuming that u data are assimilated sequentially at yo = 0
every 4 hours, t = 40 days. The free wave propagates in the
direction of positive y values.
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[55] Some of the effects obtained with the wave equation
are common to our oceanographic case. A propagating
feature corresponding to advection is seen in the estimate
of lagged model correlations (Figure 9). Also, plotted along
the transport streamline at the depth of observation point, Pf

for the tangential velocities along the streamline has shorter
spatial scales than Pt,t

m (Figure 19) particularly evident to the
south from the observation site, in the direction of the mean
alongshore advection.

8. Summary

[56] Sequential OI-based assimilation of depth-dependent
current measurements into a coastal circulation model
shows that data from one or two moorings provides signif-
icant improvement in the velocity prediction along the path
of the upwelling jet at an alongshore distance of 90 km,
both downstream (in the direction of advection) or upstream
(in the direction of CTW propagation). Where the jet is
deflected from the coast, additional velocity mooring instal-
lations may be necessary to constrain the solution in the
inshore separation zone.
[57] The choice of the forecast error covariance may be

critical for efficient use of the data. An artificially long
spatial scale for the covariance corresponding to inner-shelf
sites resulted here from the spatially constant wind forcing
used in the calculation of Ps,q

m . With such a forecast error
covariance, the use of inner-shelf data does not increase
accuracy of predictions at a distance of 90 km. Assimilation
of currents at SIS in addition to SSB+SMS actually reduces
the quality of predictions at Line N. For predictions at a
closer distance (NH10) inclusion of SIS data is beneficial.
In experiments where data from only one mooring are
assimilated, comparison of the actual and expected DA

performance provides a consistency test for the Pf, and
further demonstrates the need for an improved forecast error
covariance for inner-shelf locations.
[58] The analysis of the wave equation shows that

propagating dynamical modes affect the spatial structure
of Pf, shortening decorrelation length scales of Pf in the
direction of propagation compared to Pm, the model error
covariance unconstrained by previously assimilated data. A
similar effect is evident in the direction of southward
advection in the covariances applied here with the ocean
circulation model. At alongshore distances from the data
sites greater than the length scales implied by Pf the
correction to the model solution can be a result of dynam-
ical adjustment.
[59] The accuracy of our solutions constrained by the

velocity data is better for the first part of our study period
(days 141–190). Analysis of satellite SST images raises
concerns about the adequacy of our limited area model for
the later part of the study period. It is possible that flow
behavior in the area offshore of the mooring installations is
coupled dynamically with separation of the upwelling jet off
Cape Blanco, about 150 km to the south or with the
poleward undercurrent [Huyer, 1983; Pierce et al., 2000].
Neither of these processes are represented in our limited
area model. To extend this study, a high-resolution open
boundary model nested in a larger scale model should be
implemented. Information passed from the larger scale
model should be considered a prior guess with the data
inside the domain used to reduce open boundary errors. In
the context of a model based on the fully nonlinear primitive
equations, such a task is more challenging than cases based
on a quasi-geostrophic model [Yaremchuk and Maximenko,
2002] or on the linearized primitive equationmodel [Kurapov
et al., 2003]. For instance, a model like POM is sensitive to

Figure 19. Model-only (thin lines) and forecast error (bold lines) covariances of the tangential
velocities vt at the observation location (dotted vertical line) and points taken at the same depth along the
mean depth-integrated transport streamline through the observation point. Covariances are normalized by
their value at the observation location to highlight the difference in spatial scales. Measurement sites are
(a) NSB at 18 m; (b) NMS at 12 m; (c) SSB at 16 m; and (d) NIS at 10 m.
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specification of open boundary values owing to the fact that
the continuous model based on inviscid hydrostatic primi-
tive equations can be ill posed if the open boundary values
are specified locally [Oliger and Sundström, 1978; Bennett,
2002, section 6.4]. Open boundary conditions implemented
for our study region should allow outgoing waves to
radiate freely and at the same time represent dynamic
modes coming into the computation domain. For instance,
at the northern end of our domain open boundary con-
ditions should be radiative for outgoing coastal trapped
waves and at the same time be receptive for incoming
information advected into the area with a southward
upwelling jet. Separation of the flow into incoming and
outgoing parts is nontrivial over realistic bathymetry.
Some progress in this direction is reported by Dinniman
and Klink [2002] and Gan and Allen [2005]. The use of
data assimilation for open boundary flow correction
brings additional problems. For instance, the choice of
an open boundary error covariance affects wave radiation
and ultimately solution quality inside the domain [see
Kurapov et al., 2003].
[60] The forecast error in the interior of the computational

domain may result from imperfect open boundary values
from earlier times that have been advected inside the
domain. To provide correction to the open boundary values
back in time using present data in the interior, variational
(smoothing) methods rather than filtering should be
employed. Variational methods are also capable of provid-
ing, where appropriate, a dynamically balanced solution
such that the effect of DA on term balances can be
investigated. New methods and tools [e.g., Chua and
Bennett, 2001; Moore et al., 2004] should be tested for this
use. The present study, showing the positive effect of
assimilation of currents from moored acoustic Doppler
profilers at a substantial alongshore distance, suggests that
these data would contain important information about
boundary values in an open boundary implementation.

Appendix A: Expected RMSE Improvement

[61] In the formal derivation here we use linear algebra
notation. Lower and upper case bold symbols stand for
vectors and matrices, respectively, and the prime denotes
matrix transpose. The errors in the model-only solution,
forecast, and the analysis are e{m,f,a} = w{m,f,a} � w, where
w denotes the true state. Then, Pt,t

m = hemem0 i, Pf = hefef0i, and
Pa = heaea0 i, where angle brackets denote ensemble averag-
ing. The assimilation data set is defined by H and d, with
the associated data error ed = d � Hw. The validation data
set is defined by H1 and d1, with errors in the validation
data e1 = d1 � H1w. The model data error covariance at the
validation sites is

h H1w
m � d1ð Þ H1w

m � d1ð Þ0i ¼ H1P
m
t;tH

0
1 þ he1e01i; ðA1Þ

assuming hefe10 i = 0, which is reasonable for a case of data
errors uncorrelated in time. Taking into account (2), the
analysis data error covariance is

h H1w
a � d1ð Þ H1w

a � d1ð Þ0i ¼ H1P
aH0

1 þ he1e01i �H1Ghede01i
� he1e0diG0H0

1: ðA2Þ

The expected variance improvement EI is then the mean of
the diagonal elements of (A1) minus (A2):

EI ¼ mean diag H1 Pm
t;t � Pa

� �
H0

1

n o
þmean diag 2H1Ghede01i

� �
:

ðA3Þ

In our implementation, data errors are assumed to be
spatially uncorrelated. Then, if the data are assimilated at
one mooring and EI is estimated at another mooring site,
then the second term in (A3) is 0. If EI is assessed at the
assimilation site, the second term in (A3) is reduced to
evaluation of the mean of diagonal elements of 2 HGCd.
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